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Abstract

I examine an infinite-period duoply market with positive consumer switching costs and over-
lapping generations of consumers. When consumers have a finite time-horizon, then, unlike
Beggs and Klemperer [1992], the two firms may alternate dominance from one period to the
next, alternately charging high and low prices. This agrees with the intuition that firms with
a high locked-in market share may set price so as to exploit that market share, which causes a
subsequent low market share among the new cohort of buyers, leading to lower prices, etc.
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I Introduction

In many markets, consumers (or wholesalers) incur switching costs when changing from one supplier
to another. Switching costs can include learning, transaction, and information costs.! In addition,
they can also include artificial switching costs, created by producers to lock in consumers (e.g.,
frequent flyer programs or coupons included with packaging).

There have been several papers examining duopoly competition with positive consumer switch-
ing costs. Examples of two-period models include Beggs [1989], Caminal and Matutes [1990], and
Klemperer [1987a,1987b]. While such models are useful for demonstrating the non-competitive ef-
fects of switching costs, their finite horizon renders them incapable of describing how market shares
evolve over time. In addition, two-period models may not be entirely satisfactory for considering
entry decisions or the effects of exogenous shocks. Hence it is important to consider infinite-horizon
models of switching costs.

There are several recent contributions that examine the evolution of market shares and prices
in infinite-horizon models of switching costs. For example, Farrell and Shapiro [1988] use an over-
lapping generations model to get the extreme result that firms alternate between selling to all of
the new consumers and selling to all of the old consumers. Also using an overlapping generations
model, Padilla [1992] gets a similar result. These extreme, all-or-nothing results are unrealistic and
are driven by the assumption of perfect substitutability between goods produced by different firms.

Beggs and Klemperer [1992] instead use a model with imperfect substitutability and where
consumers have an infinite horizon. One of their main results is that while firms sell to some of both
the young and the old consumers, market shares evolve monotonically. Although they no longer get
an all-or-nothing result, a formulation where consumers have a finite horizon is more realistic since
people do have finite lives. In addition, even if buyers’ time horizons are considered to be infinite
(as would be the case if the buyers are wholesalers), a model with a shorter buyer time horizon
may be relevant for product classes where each ‘generation’ of a product is useful only for a limited
period. For example, at one time cassettes tapes were the main medium for the storage of data on
personal computers. Tapes were superseded by floppy diskettes and hard disk drives, which in turn
were superseded by diskettes and hard drives of successively greater capacity. Eventually these
storage devices may themselves be replaced by more sophisticated technologies (e.g., CD-RAM
drives). While each generation of the product serves the same function, they are very different
pieces of hardware, with their own associated learning, installation, and transaction costs. Hence,
even if consumers have relatively long time horizons, their problems may be decomposed to shorter
horizon maximization problems for each generation of a product.

The alternative to buyers with infinite horizons is a model with overlapping generations of
buyers. Using a model with imperfect substitutability and overlapping generations, I examine the

evolution of prices and market shares. When consumers have a finite horizon, firms sell to some of



both the young and the old consumers, and prices and market shares converge to the steady state.
Although prices and market shares converge in both the infinite and finite horizon cases, whether
or not convergence is monotonic depends on the finiteness of the consumer’s time horizon. The

remaining results of Beggs and Klemperer are unchanged.

I The Model

In each period ¢t = 1,2, ... each firm, j = 0,1, simultaneously chooses a price, p;, given its expec-
tations about how its choice will affect future profits. Given current prices and their expectations
about future prices, consumers then decide which firm to buy from.

Consumers live for two periods. In each period a cohort of young consumers enters the market.
At the end of their second period of life, they leave the market. Consumers have a reservation
value of r and demand a single unit of the good in each period. Consumers from each cohort are
uniformly distributed on the interval, [0, 1], with a transportation cost of one per unit of distance.
Inclusion of a parameter for the transportation cost is unnecessary as it only acts as a scale factor.
Assume the mass of each cohort is normalized to one. Once a young consumer has bought from a
particular firm, it is too costly for that consumer later to switch to another firm. Consumers get a
utility of zero in any period in which they do not purchase. The model can be easily modified to
incorporate population growth. Similar to Beggs and Klemperer, I also assume that a consumer
who does not buy must leave the market.

The two firms, j = 0, 1, are located at j, so consumer ¢’s transportation cost when buying from
firm 0 is ¢ and when buying from firm 1 is 1 — 7. Firm j’s share of locked-in consumers is o;; in
any period ¢ > 0, where o indicates its initial share. When there is no ambiguity, I omit the
time subscript and refer to current price and locked-in market share as p; and o; and future (next
period) price and locked-in market share as p; and O';-. Marginal costs are assumed to be identical
and are normalized to zero. As inclusion of asymmetric costs does not significantly alter the results,
I assume symmetry here to simplify the computations.

Firms have a discount factor §r and maximize discounted profits. Consumers have a discount

factor d¢c and maximize discounted utility.

IIT Results

The solution method is constructive and is similar to the approach used by Beggs and Klemperer.
When possible, I use the notation of Beggs and Klemperer. I look for Markov equilibria where the
state variable is the current share of locked-in consumers and the equilibrium price functions are

linear.

Proposition 1 There exists (r,7) such that if r < r < T, then there ezists a Markov perfect



equilibrium in which firms’ equilibrium strategies are linear. This is the unique equilibrium in

which agents pursue linear strategies and all consumers buy in equilibrium.
Proof: See appendix.

The lower bound on r is required to ensure that all consumers are willing to buy at the prices
derived. The upper bound on 7 is required to ensure that firms do not have an incentive to
deviate from these prices by forgoing all new consumers and extracting all of the surplus from
their current customer base. Given that these constraints are satisfied, there is a unique Markov
perfect equilibrium where firms use a pricing strategy that is a linear function of their current share
of locked-in consumers. Note that this does not rule out the existence of other types of Markov
equilibria.

In equilibrium, p; = d 4 eo; where e > 0 (see appendix) so that price is increasing in locked-in
market share—firms with a high locked-in market share exploit that market share by charging high
prices. In addition, since o} = n — poj, with 7,1 > 0 (see appendix), it can be seen that the
equilibrium share of locked-in consumers behaves cyclically. This is due to the fact that locked-in
consumers are valuable for only one period—a firm with a high locked-in market share charges a
high price, resulting in a low locked-in market share next period. This agrees with the intuition
that if a firm has a high locked-in market share, it sets a high price so as to exploit that market
share; but, in the absence of an ability to price discriminate, the high price means a small market
share among the new cohort of consumers. This, in turn, leads to a low price, etc.

In order to consider the evolution of market shares (i.e., shares of total sales), define 711 =
(0jt+1 + 0j4)/2—this is firm j’s the share of period ¢ total sales. From this I get an expression for

equilibrium market share,
(1) o) =1 — 0.

That is, equilibrium market share also behaves cyclically. This is shown formally in the following

proposition.

Proposition 2 Firm j’s period-t market share, 5;;, evolves as
— ]- t _ 1
@) 0= 5+ ) (330 3)

where G50 = (0j0 + 0j-1)/2 and 051 =0/ — 0jo/p. Firm j’s steady-state market share is 1/2

and p is in the interval [2/3,1), strictly increasing in dr, and converges to 1 as dp — 1.

Proposition 2 follows from (7), repeated substitution of (1), and from the proof of Proposition



Since p < 1, it can be seen that market share converges to 1/2. However, market shares are
alternately greater than and less than 1/2; hence, convergence is not monotonic.

Notice also that convergence is much slower than in Beggs and Klemperer. Specifically, u is at
least three to five times larger than in Beggs and Klemperer. In fact, as firms become more patient
(0F increases), convergence becomes slower (u increases). In particular, as 6 — 1, p — 1 so that

in the limit, market share does not converge at all but alternates between oo and 1 — o} .

Appendix

Proof of Proposition 1: The strategy of the proof is as follows. Since I am interested in equilibria
with linear pricing strategies, I only consider such pricing strategies. Linear pricing strategies
imply that value functions must be quadratic and the future share of locked-in consumers will be
linear. First, I compute the coefficients that solve the consumer’s maximization problem, satisfy
the definition of a value function, and maximize firm profits. Then I find the bounds on r that
ensure that all consumers purchase in equilibrium and ensure that firms follow this pricing strategy.
Existence and uniqueness of an equilibrium in linear strategies follows.

Suppose that the firms’ value and price functions are as follows:

(3) (o) =k+lo; + mof-

(4) pj(o;) = d+eoj.

New consumer demand, v}, is determined by equating the marginal young consumer’s expected
payoff from buying from each firm, using the equilibrium prices (4) and then solving:

1 1

) Y= 5 T St 6o 1 oce) )

Now, substitute the equilibrium prices (4) into (5) to get firm j’s future market share as a

function of current market share:

(6) o} = o
where

14+
(7) =t



e

() e I e+ ope

Using (4) and the definition of a value function I get:
(9) I (0;) = (d + eoj) (0 + 07) + drIL;i(0}).

Substituting (3) and (6) and equating the coefficients yields the following equations:

(10) k=dn+6r(k+In+mn?)
(11) Il =d(1—p)+en—opu(l+ 2mn)
(12) m = e(1 — p) + dpmpu’.

In equilibrium, each firm chooses price to maximize the following:
(13) pi(oj +vj) + orll; ()

where v; is as in (5). The first order condition for this maximization problem is:

ov; ov;
(14) pjﬁ—pij(O'ijl/j)jL(SF(l+2mI/j)a—pj =0.

Substituting the equilibrium market share (6) for v}, solving for p; and then equating the constants

yields:
(15) d=2n(14dc +dce) — 6p(l + 2mn)
(16) e=2(1—p)(1+dc + dce) + 26 pmyp.

With the use of (12) and (16), m and e can be solved as functions of p:

2(1 — p)%(1 + 6¢)

(17) T U= 20pn+ 0rp?) — 200(1 — @)(1 — 65 p22)

2(1 — p)(1 4 0¢)(1 — Spp?)

(18) © T U= 26pp+0rp?) — 260 (1 — p)(1 — 6pp)’




From the solution for e together with (8) and some manipulation, it can be seen that y must

satisfy the following cubic equation:
(19) p(l = 26pp+6pu®) = 2(1 — p)(1 = dpp?) = 0.

At 6F = 0, it is easy to see that the unique solution to this equation is u = 2/3. For dp > 0, the

following is the unique valid solution (i.e., || < 1)? to this equation:?

(20) = 2 sin(arcsin(\/ﬁ)/l’)).

Vor

 is strictly increasing and continuous in 6 and p € [2/3,1) with p — 1 as 0p — 1. Substituting

w into (7) yields the solution for 7.

Equations (11) and (15) can now be solved for [ and d as functions of 7, u, m, and e. Finally,
(10) can be solved for k as a function of 7, u, I, m, d, and e.

In order to ensure that consumers always buy at the above prices, it must be that the reservation
value is at least as large as the maximum possible price. That is, » > d+eo; for all o;. This implies
r=d+e.

In order to ensure that firms have no incentive to deviate from these prices, it must be that for
all o, the gain from deviating and extracting all surplus from their current customer base plus the
value of starting with a zero customer base in the following period must be no greater than the

payoff for playing the prescribed strategy:

(r—0j)o; +0rl;(0) < pj(oj + o) + rlli(0})
= (d+eoj)(o;+ 0}) + 6p(k + 1o’ + m(c))?).

This holds as long as

o o’
r < (d+ eoj) (1 + —J> +o0;+ 6F—J‘(l + mo?}).
9j 93
Let 7 be the minimum of the right hand side. By differentiating with respect to ¢; and noting that
the derivative i) has no real roots, ii) is negative for small o}, and iii) is continuous on [0, 1], it can
be seen that the right hand side is strictly decreasing in o;. Hence 7 is equal to the right hand side

with o; = 1:

(21) rz(d+e)(1+1_T“>+1+5F(1_T“> (z+m1_T“>.



r>r

(22)

as long as [ > 0 and m > 0. The solution for [ is

2(1 — 12)(1 + 6¢)(1 — op)

l= .
(L+06F)(1 = 20pp + 6pp?) — 20c(1 — p)(1 — dpp?)

By examining the solutions for [ and m (equation (17)) and using (19) it is clear that they are both

positive.

Finally, the second order condition for the firm’s profit maximization problem is:

ov; i\ >

2—L 4+ 25pm (—j> =

apj F apj
_(14—(50)(1—51:‘) < 0
(1+ ¢ + dce)? '

Endnotes

Detailed descriptions can be found in Klemperer [1987a]. See To [1994] for a discussion of

switching costs in an international setting.

2. If |u] > 1, then o; ¢ [0, 1] in finite time.

3. The remaining two roots of this equation are:
__ V/3dpcos(arcsin(vdp)/3)  sin(arcsin(v/dr)/3)

a op Vor
and
_ V/30p cos(arcsin(v/op)/3)  sin(arcsin(v/dr)/3)
Ja Vor '
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