
Strategic Resource Extraction, Capital

Accumulation and Overlapping Generations ?

Leonard J. Mirman a

aDepartment of Economics, University of Virginia, Charlottesville, VA 22903

Ted To b,∗

bBureau of Labor Statistics, 2 Massachusetts Ave., NE, Washington, DC 20212

Abstract

The standard resource extraction framework assumes infinitely lived agents and
yields an overfishing result. For some applications, a finite time horizon may be
more appropriate. A direct extension of the Levhari-Mirman model to overlapping
generations yields an extreme overfishing result. Alternatively, we assume young and
old specialize and respectively fish and supply capital. In this model, under some
circumstances there may well be under-utilization of natural resources. However,
for a given production technology, if there are a sufficiently large number of agents,
overfishing always results.
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1 Introduction

Levhari and Mirman (1980) consider the extraction of a commonly owned,
renewable resource in a dynamic setting. Infinitely lived agents decide how
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much of the resource to extract in each period, taking into account, the rate
at which the resource regenerates itself and the extraction decisions of other
agents. That is, they consider fishing as a differential game or in other words, a
dynamic version of the “tragedy of the commons.” This original framework has
been extended in various ways. 1 One potential drawback of these studies is
the assumption that agents are infinitely lived. In some applications, a model
where agents have a finite time horizon may be more reasonable. It is well
known that the assumption of a finitely-lived agent, or overlapping generations
models, may lead to Pareto inefficiencies through the over-accumulation of
capital—or in our context the under-exploitation of the resource. It is our
purpose, in this paper, examine the robustness of the dynamic tragedy of the
commons in the face of the assumption of finitely lived agents and in particular
the relationship between the standard under-exploitation externality and the
dynamic commons tragedy of over-exploitation.

A simple alternative is to use an overlapping generations framework. How-
ever, directly extending the Levhari and Mirman (1980) model to overlapping
generations yields the result that the resource are fully extracted in the first
period, this is the traditional tragedy of the commons. To see this, notice that
the old have no future to look forward to and, therefore, consuming the entire
resource stock is optimal for the old. Furthermore, given that the young can
expect the old to consume the entire stock, the young also extracts as much of
the resource as possible. Although this result is extreme, it has some appeal;
agents with little or no future exploit the resource to the greatest extent pos-
sible. Rapid over-exploitation, such as suggested by this simple overlapping
generations framework, has been seen repeatedly as over-harvesting has en-
dangered many plant and animal species as well as brought about the outright
extinction of some species. 2

Nevertheless, many renewable natural resources do not face such extreme de-
grees of exploitation. One reason may be because there are technological or
legal barriers limiting how much of the resource can be extracted at any mo-
ment. For example, given the vastness of the resource, it would be difficult to
completely foul the world’s supply of clean air in a short period of time. Alter-
natively, it may be that there is a generational separation between extraction
and capital accumulation. We consider the latter alternative and show that
if the young extract the resource and the old supply capital then the young
may refrain from fully exploiting the natural resource. 3 Moreover, in contrast

1 See for example, Cave (1987), Datta and Mirman (1999, 2000), Fischer and Mir-
man (1992, 1996), Hannesson (1997) and Levhari et al. (1981). These extensions
are all games with the exception of Levhari et al. which is competitive.
2 For example, discovered in 1741, Steller’s Sea Cow (from the same order as the
American Manatee) was hunted to extinction in less than thirty years.
3 Overlapping generations models are used as metaphors for the finiteness of life
spans and the assumption of two-period lives is made for tractability. In a more
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to the Levhari and Mirman overfishing result, under the current framework,
there may well be underfishing. Nevertheless, for a given technology, if there
are enough agents, overfishing results.

2 The Model

In each period there are two generations, a young generation and an old gen-
eration. Each individual lives for two periods.

Let Xt be the stock of the renewable natural resource at time t. The rule
governing the rate the resource renews itself is given by,

Xt+1 = f(Xt − Yt) (1)

where f is increasing and concave and total extraction in period t is given by
Yt.

Suppose that only the young can extract the resource, part of which is either
saved as capital or used as an input for current consumption. The old own
capital that is used, in conjunction with the resource, to produce the consump-
tion good. Given this structure, there can now be an incentive for the young
to save some of the natural resource. By not extracting all of the resource, the
young ensure that they can consume when old.

In each period, the young first decide how much of the natural resource to
extract and save as capital, ki

t+1, and how much to extract and use for current
production, zi

t. Total extraction is therefore yi
t = zi

t + ki
t+1. Following the

extraction decision, a competitive market for k and z opens. The current
young hold zi

t and the current old hold ki
t, which they then trade on this

market. Both old and young use capital, k, and the natural resource, z, to
produce the consumption good, c, using a homogeneous of degree 1 production
function G(k, z).

Note that while trade in the resource and capital are perfectly competitive, the
young recognize that their resource extraction decision affects both the price
of the fish that they take to market and the price of capital that they take
to market once old. To see this, observe that the resource extraction problem
is separate from the competitive markets they subsequently face, both when

general framework where agents live for many periods, there will still be an incentive
for conservation as long as at some advanced age, individuals are no longer able to
fish and must subsist on their savings. Analytic solutions to such models typically
require computational methods that are beyond the scope of the current paper (see
for example, Auerbach and Kotlikoff, 1987).
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young and when old. One can think of the result of the competitive markets as
determining a demand function for “resource extraction services.” Given this
demand for resource extraction services, young agents play a Cournot resource
extraction and capital accumulation game with one another.

Assume that each generation has n individuals. If each individual extracts
yi

t for i = 1, 2, . . . n then Yt =
∑n

i=1 yi
t. Similarly, define zi

t as the amount of
resource young consumer i puts on the market and ki

t as the amount of capital
old consumer i holds so that Zt =

∑n
i=1 zi

t and Kt =
∑n

i=1 ki
t.

Consumers utility is given by,

u(ciy
t ) + u(cio

t+1), (2)

where u is increasing and concave. The purchases of k and z by both the young
and old are used to produce the consumption good c, using the production
function G.

3 Equilibrium

Suppose that u(c) = ln c, f(X) = Xα and G(k, z) = kβz1−β. The steady state
level of the natural resource when there is no extraction is X = 1.

In each period, agents play a two-stage game. In the first stage, young con-
sumers extract the natural resource for current consumption or to save as
capital. In the second stage consumers purchase k and z to produce the con-
sumption good. As is usual in such settings we begin with the second stage.

3.1 Competitive Marketplace

An old consumer has capital ki
t and maximizes consumption when old by

solving:

max
{kio

t ,zio
t }

G(kio
t , zio

t )

subject to: ptk
io
t + zio

t ≤ ptk
i
t,

(3)

where pt is the price of k relative to the numéraire good z. Since production
of the consumption good is Cobb-Douglas the old consumer simply retains a
fraction, β, of the endowment, ki

t:

kio
t = βki

t (4)
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and sells the remainder at relative price pt to purchase the resource, which is
the numéraire,

zio
t = (1− β)ptk

i
t. (5)

A young consumer has zi
t units of the resource and maximizes consumption

when young by solving:

max
{kiy

t ,ziy
t }

G(kiy
t , ziy

t )

subject to: ptk
iy
t + ziy

t ≤ zi
t.

(6)

For Cobb-Douglas production of the consumption good, the old consumer
purchases kiy

t at price pt, using the fraction β of the endowment, zi
t:

kiy
t =

βzi
t

pt

. (7)

The remaining fraction 1− β of zi
t is retained,

ziy
t = (1− β)zi

t. (8)

Total demand for k and z are
∑n

i=1(k
iy
t +kio

t ) and
∑n

i=1(z
iy
t + zio

t ), respectively.
Similarly, total supplies are Kt and Zt as defined earlier. Market clearing
therefore requires that,

β

(
Zt

pt

+ Kt

)
= Kt, (9)

and
(1− β) (Zt + ptKt) = Zt. (10)

This yields the equilibrium price ratio,

pt =
β

1− β

Zt

Kt

. (11)

3.2 Strategic (Cournot) Resource Extraction

Substituting the equilibrium demands and prices into the young agent’s utility
function,

ln ciy
t + ln cio

t+1 = ln(kiy
t )β(ziy

t )1−β + ln(kio
t+1)

β(zio
t+1)

1−β

= ln
(
(1− β)

Kt

Zt

zi
t

)β

((1− β)zi
t)

1−β + ln(βki
t+1)

β

(
β

Zt+1

Kt+1

ki
t+1

)1−β

= ln(1− β)
Kt

β

Zt
β zi

t + ln β
Zt+1

1−β

Kt+1
1−β ki

t+1.

(12)
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The first stage maximization problem for the young consumers can thus be
written as,

max
{zi

t,k
i
t+1}

ln(1− β)
Kt

β

Zt
β zi

t + ln β
Zt+1

1−β

Kt+1
1−β ki

t+1

subject to: Xt+1 =

(
Xt −

n∑
i=1

yi
t

)α

Zt+1 = Zt+1(Kt+1, Xt+1),

(13)

where Zt+1(Kt+1, Xt+1) is the anticipated equilibrium value of Zt+1 and
(Kt+1, Xt+1) is the t + 1 period state.

To solve this problem, we hypothesize that for Cobb-Douglas production func-
tions the equilibrium value of Zt+1 is a constant fraction of Xt+1 and is inde-
pendent of Kt+1. That is, let Zt+1 = ηXt+1. Once the model has been solved,
these hypotheses are shown to be consistent with the equilibrium solutions
and are therefore justified.

Notice that maximizing the young consumer’s objective function with respect
to zi

t and ki
t+1 is equivalent to substituting ki

t+1 = yi
t−zi

t and maximizing with
respect to zi

t and yi
t. Substituting Zt+1 = η(Xt−Yt)

α and then taking the first
order conditions with respect to zi

t and yi
t yields:

− β

Zt

+
1

zi
t

+
1− β

Yt − Zt

− 1

yi
t − zi

t

= 0, (14)

−α(1− β)

Xt − Yt

− 1− β

Yt − Zt

+
1

yi
t − zi

t

= 0. (15)

In a symmetric Nash equilibrium yi
t = yj

t and zi
t = zj

t for any i, j = 1, 2, . . . n.
Solving (14) yields:

Zt =
n− β

2n− 1
Yt. (16)

Since Zt + Kt+1 = Yt, solving for Kt+1 yields:

Kt+1 =
n− (1− β)

2n− 1
Yt. (17)

Substituting Kt+1 into (15) and solving for Yt yields:

Yt =
2n− 1

(2n− 1) + α(1− β)
Xt. (18)

The equilibrium level of extraction is a constant fraction of Xt. This extrac-
tion rate is strictly increasing in the number of agents, n, approaching full
extraction as n gets large.
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Using the solution for Yt and substituting into (16) and (17) yields:

Kt+1 =
n− (1− β)

(2n− 1) + α(1− β)
Xt, (19)

and

Zt =
n− β

(2n− 1) + α(1− β)
Xt. (20)

This verifies our prior assumption that in equilibrium, Zt is a constant fraction
of Xt.

Finally, substituting Yt into the law of motion yields,

Xt+1 =

(
α(1− β)

(2n− 1) + α(1− β)
Xt

)α

, (21)

which has steady state,

XSS =

(
α(1− β)

(2n− 1) + α(1− β)

) α
1−α

. (22)

It is straightforward to see that XSS is strictly less than one, the natural
steady state when there is no extraction.

4 The Golden Rule

The Golden Rule used in growth theory refers to the steady state of an econ-
omy at which total, per period, consumption is maximized. It is useful here
to modify this concept for our model of resource extraction and capital ac-
cumulation in order to understand the welfare properties of our equilibrium
better.

Our model is different from the standard growth framework in that there are
two forms of capital: the commonly owned resource stock, Xt, and the pri-
vately owned capital stock, Kt. We first define the Golden Rule individually
for each form of capital. The Golden Rule rate of resource extraction must
maximize the steady state, per-period, extraction of Y . Similarly, given some
steady state rate of resource extraction, Y ∗, the Golden Rule rate of capi-
tal accumulation maximizes, per-period, consumption. Looking at both forms
of capital together, we say that the Globally Golden Rule holds if both the
Golden Rule rate of resource extraction and the Golden Rule rate of capital
accumulation hold.

The Golden Rule level of resource stock maximizes f(X) − X (i.e., if X is
the steady-state resource stock remaining after Y = f(X) − X units of the
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resource has been extracted). Thus, the Golden Rule level of the resource stock
must solve f ′(XGR) = 1. Given XGR, YGR = f(XGR)−XGR.

Given a steady state level of resource extraction, Y ∗, the Golden Rule level
of capital accumulation is a pair (K, Z) which maximizes total per period
consumption.

max
{K,Z}

G(K, Z)

subject to: K + Z ≤ Y ∗
(23)

Since G is homogeneous, KGR is some constant fraction of Y ∗, say φ.

For our example with Cobb-Douglas production this yields XGR = α
1

1−α ,
YGR = α

α
1−α (1 − α) and KGR = βY ∗. A simple comparison of XSS and XGR

reveals that if α is relatively small then XSS > XGR and if α is relatively
large then XSS < XGR. In other words, the steady state rate of resource
extraction can be either less than or greater than the Golden Rule rate of
resource extraction. As in Diamond (1965), if XSS > XGR, the equilibrium
rate of resource extraction is Pareto inefficient (i.e., aggregate consumption
in at least one period can be increased for both generations by increasing the
amount of the resource extracted in that period and then extracting according
to the Golden Rule ever after).

Our under-extraction (or equivalently overaccumulation) result bears some
similarity to Diamond (1965), however, there are two other factors at work
in this model. In addition to the Diamond incentive for overaccumulation,
there are two opposing incentives in the extraction of the natural resource.
The first is the standard incentive to overexploit a publicly owned resource.
The second is an incentive to restrict the supply of the resource to enhance
market power. Although the trading of k and z is competitive, endowment
levels are determined prior to the opening of the market and, thus, agents can
fully anticipate the effect of their extraction decisions on the prices of k and
z. This market externality shows up in dynamic economics in which there are
long lived agents, see Datta and Mirman (1999, 2000). In other words, young
agents play Cournot against one another in making their resource extraction
decisions. Since the ability to restrict supplies weakens as the number of agents
grows, the incentive to over-extract dominates when n is sufficiently large.

Similarly, it is not surprising that the steady state rate of private capital
accumulation is often inefficient. In particular, the rate of private capital ac-
cumulation is optimal only for n = 1 or β = 1/2. 4 When n > 1, there is too
much capital accumulation if β < 1/2 and too little capital accumulation if

4 Our results that Golden Rule allocations are not generally attained also hold if
young consumers discount old consumption, but the precise conditions under which
the Golden Rule is equal to the Cournot Nash equilibrium changes.
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β > 1/2. In this case also, in addition to the Diamond (1965) incentive for
overaccumulation, there are the two opposing strategic incentives noted above.

Given that the private rate of capital accumulation satisfies the Golden Rule
when n = 1, it is useful to calculate the steady state of the public resource
stock. In this case:

XSS =

(
α(1− β)

1 + α(1− β)

) α
1−α

. (24)

Notice that even in this case, where private capital accumulation is efficient,
the natural resource may be over- or under-extracted. Thus unlike Levhari and
Mirman (1980) where if there is just a single agent extracting the resource, the
level of resource extraction is efficient, with overlapping generations, extraction
is often Pareto inefficient and almost always defies the Golden Rule.

5 Concluding Remarks

As with the original Levhari and Mirman model, in the limit as n gets large,
the steady state fish stock goes to zero. This is the traditional tragedy of the
commons problem where too many agents using a public resource leads to
overuse of that resource. However, as we have demonstrated, there need not
be a tragedy. Or more accurately, the tragedy may be that not enough of the
resource is consumed. In particular, for fixed n (we can take n as large as
we like), if returns-to-scale is declining at a sufficient rate (α is sufficiently
small), a combination of the Diamond and strategic incentives leads to too
little resource extraction. That is, no matter how many agents there are, there
is some parameter configuration for which there is Pareto inefficient under-
extraction of the resource.

Since the Globally Golden Rule is generically unattainable, are there any
policy prescriptions that would bring it about? Consider in turn three possible
cases: i) over-extraction of the resource and overaccumulation of capital, ii)
under-extraction of the resource and under-accumulation of capital and iii)
either over-extraction of the resource and under-accumulation of capital or
under-extraction of the resource and overaccumulation of capital. In case i),
the Globally Golden Rule can be straightforwardly attained by setting the
appropriate quotas on both resource extraction and capital accumulation. 5

Case ii) is problematic since in an economy with just two goods and no money,
corrective policy involving only subsidies cannot be funded. Finally, it may be
possible to attain the Globally Golden Rule in case iii). Consider, for example,
the case in which there is over-extraction and under-accumulation of capital.

5 One might also think about a tax policy in this case but quotas are simpler in
that there are no proceeds to be distributed.
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The relevant policy in this case would be to tax resource extraction, subsidize
capital accumulation and impose a quota (possibly non-binding) on capital
accumulation. If tax receipts are sufficient, the quota would be binding and
the Globally Golden Rule would be attained. To sum up, when there is both
under-extraction and under-accumulation, there is little that can be done since
there is no way to fund corrective policy. In all other cases, there is scope for
corrective policy and quite often, this corrective policy yields Golden Rule
allocations.
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