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Summary. I examine a Knightian (1921) model of risk using a general equi-
librium model of investment and trade. A population of agents with various
preference types can choose between a safe production technology and a risky
production technology. In addition, the distribution of types of agents
changes through a standard evolutionary dynamic. For a given population
distribution, the equilibrium is in general ine�cient, however, by allowing the
population distribution to change in response to market generated rewards,
the population will converge to one where the equilibrium is e�cient and
where the population as a whole behaves as if all agents were risk neutral.
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1 Introduction

I examine a Knightian (1921) model of risk using a general equilibrium
model of investment and trade. Agents of various preference types can
choose between a safe and a risky production technology. Risk in this model
is uninsurable for reasons of moral hazard.1 Risks are independently and
identically distributed and once the outcomes of these production choices are
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realized, agents trade in a competitive exchange market. Finally, preference
types which induce successful behavior become more numerous. My model
ties together three distinct but related literatures: Blume and Easley (1992),
Kihlstrom and La�ont (1979) and papers on the evolution of attitudes
towards risk (Robson, 1996, 1997).

Kihlstrom and La�ont (1979) model entrepreneurial self-selection
through agents' risk preferences. They, construct a general equilibrium
model where agents with di�ering attitudes towards risk can choose between
working for a certain wage or operating a ®rm for an uncertain return. One
of their main results is that, in general, the equilibrium is Pareto ine�cient.
This is because with non-risk-loving individuals, there is, in general, an in-
e�ciently low level of aggregate investment. However, if risk preferences
adjust in response to market rewards, in the long run, investments need not
be ine�cient.

Blume and Easley (1992) model asset pricing with a wealth accumulation
process that has parallels to models of evolution. They ®nd that given a ®nite
set of agents, those that eventually hold almost all of the wealth are risk-
averse. One might conjecture that long run risk-aversion is a result of their
®nite population ± if an agent did not own a share of every asset, then with
probability one, that agent would hold no wealth in ®nite time. However, it
can be seen that this di�erence still obtains even when there are many agents.
In particular, since the returns earned by agents holding identical portfolios
are perfectly correlated, any preference type which did not own a share of
every asset would hold no wealth in ®nite time. When risks are independent,
risk-aversion no longer results.

Finally, I depart from the literature on evolution and risk attitudes in that
the relative payo�s are determined endogenously through a competitive
pricing mechanism. Robson (1996, 1997), for example, examines decision
theoretic models where ®tness payo�s in each period are ®xed (i.e., the lot-
teries between which agents are choosing are not priced). This generically
precludes long run populations where more than one action is chosen.

I assume that the distribution of types of agents to changes in response to
market generated rewards ± this occurs through the standard replicator
dynamic. In particular, preference types that do well, increase in relative
frequency.2 Dekel and Scotchmer (1992) provide two possible motivations
for the use of replicator dynamics. One is to argue that higher wealth cor-
responds to more children and children inherit the preferences of their par-
ents. The second is to argue that the replicator dynamic represents a reduced
form learning and imitation model with bounded rationality. This argument
has theoretical underpinnings which include BoÈ rgers and Sarin (1993),
Hopkins (1995) and Schlag (1994) who demonstrate the close relationship
between various models of learning and imitation and the standard replicator
dynamic. Finally, as I demonstrate in Section 7, the replicator dynamic is

2 See Bergstrom (1995), GuÈ th and Yaari (1992), Rogers (1994), and Waldman (1994) for other

examples which study evolution over preferences.

330 T. To



formally identical to the Blume and Easley (1992) notion that the e�ective
distribution of types changes as a result of wealth accumulation.

The main results follow. For a given population distribution, the equi-
librium is in general ine�cient. This results because in equilibrium there is an
ine�cient allocation of risk. Unlike Kihlstrom and La�ont, the equilibrium
is ine�cient not only because there can be too little investment but because
when a portion of the population is made up of risk-lovers, there can also be
too much investment. However, by allowing the population distribution to
change in response to market generated relative rewards, the population will
converge to one where the equilibrium is e�cient and where the population
as a whole behaves as if all agents were risk neutral.

2 The model

In each period, individuals make investment decisions. After the outcomes
of their investments have been realized, they participate in a competitive
exchange market. Investment decisions and trades are chosen to maximize
utility, however, preferences change over time and agents that do well earn
greater representation in succeeding generations.

There are two goods, 1 and 2, denoted by index i. Assume that there is a
continuum of types of agents, �A � �a; �a� where a < 1 < �a. Let l be an at-
omless probability measure with support �A.3 Probability measure l describes
the distribution of agents of each type.

All individuals have an endowment (e.g., time, money, etc.) which can
produce a single unit of good 1 with certainty. It can alternatively be invested
to produce a single unit of good 2 with probability r and nothing with
probability �1ÿ r�.4 Assume the realization of each individual's investment
is independent of the realizations of all other investments.

This model can be interpreted as one where each agent has an endowment
of labor which can be `invested' in a risky activity (hunting or operating a
®rm) or a safe activity (gathering or working for a wage). Or alternatively as
one where agents are initially endowed with a good which can be trans-
formed, using a risky technology, into another good. For example, money
held in a bank account provides a sure return ± money can also be invested in
a risky project which provides an uncertain monetary return.

An individual of type a 2 �A has expected utility function
ua�� ; �� � f �� ; ��a, where f : R2

� ! R� is homogeneous of degree 1. Assume
that f �x1; x2� � 0 only if x1 � 0 or x2 � 0, ensuring positive consumption of
both goods in equilibrium. Since u is a monotonic transformation of f , the

3 When l has atoms, results are analogous to those found with atomless l. When distributions

have atoms, the notation becomes more complicated because types that are indi�erent may have
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example, it is easy to show with a ®nite type example with divisible investments that the results

extend.
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demand of every type is identical and can be expressed as x�i �p;m�, where
p � p1=p2 and m is wealth. Assume that goods 1 and 2 are gross substitutes
(i.e., @x�2�p;m�=@p � 0 and @x�1�p;m�=@p < 0).

The value f �x1; x2� is the evolutionary ®tness earned by an agent con-
suming x1 and x2, and f a is the utility a type a agent derives from ®tness f .
Constant relative risk aversion provides a convenient means for character-
izing agents with di�erent attitudes towards risk. Homogeneity of ®tness has
the advantage that an agent's risk behavior is due solely to her utility
function. Furthermore, with homogeneity, ®tness becomes a multiple of
wealth or income and thus changes in the population distribution are driven
by relative wealth.

I assume the population evolves following a natural generalization of the
discrete time replicator dynamic. Let ft�a� be the average ®tness achieved by
type a agents. Using t to denote time, the population evolves according to:

lt�1�A� �
R

A ft�a� dlt�a�R �a
a ft�a� dlt�a�

�1�

for all measurable A � �A. If a population evolves according to (1), types
which achieve ®tness greater than the population average earn greater
re- presentation next period.

3 Market equilibrium

As is standard in multi-stage models, I work backwards and ®rst solve for the
competitive equilibrium given investment decisions. Let e1; e2 : �A! f0; 1g
give each type's investment decision with e1��� � e2��� � 1 where e2�a� � 0 if
a type individuals do not invest and e2�a� � 1 if they do. I assume that all
individuals of the same type choose the same investment levels and that e2���
is measurable ± this will be true in equilibrium.

Let good 2 be the numeraire and p � p1=p2 be the price ratio. Given
agents' investment decisions, e1��� and e2���, a competitive exchange equi-
librium is a triplet �x�1�� ; ��; x�2�� ; ��; pe� such that i) �x�1�p;m�; x�2�p;m�� maxi-
mizes utility given price, p, and wealth, m, ii) pe is such that aggregate
demand for each good is equal to the aggregate `endowment.'

Since the function underlying utility is homogeneous, the utility maxi-
mizing demands are x�i �p;m� � x�i �p�m. The law of large numbers implies that
the average wealth of type a agents is pe1�a� � re2�a� so that aggregate
wealth is

R �a
a �pe1�a� � re2�a��dl�a�. Similarly, the aggregate supply of goods

1 and 2 are
R �a

a e1�a�dl�a� and r
R �a

a e2�a�dl�a�. Therefore the market clearing
conditions for goods 1 and 2 are:

x�1�pe�
Z �a

a
�pee1�a� � re2�a�� dl�a� �

Z �a

a
e1�a� dl�a�

x�2�pe�
Z �a

a
�pee1�a� � re2�a�� dl�a� � r

Z �a

a
e2�a�dl�a� :

�2�
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Gross substitutability implies uniqueness of the competitive exchange
equilibrium.

4 Investment equilibrium

Given the anticipated outcome of the second stage exchange market, each
individual makes her investment decision to maximize expected utility. Ex-
pectations about the price in the second stage exchange market are consistent
in that given the aggregate equilibrium investment levels, these expectations
are realized.

To get agents' expected utilities, I ®rst substitute their demands into the
®tness function to get an indirect ®tness function, g�p;m� � f �x�1�p;m�;
x�2�p;m��. Since the ®tness function is homogeneous, the indirect ®tness
function has the property that it can be expressed as g�p;m� � g�p�m. Hence
type a agents have indirect utility function va�p;m� � �g�p�m�a. Using the
indirect utility function, a type a individual solves:

max
e1�a�;e2�a�

g�p�a�r�pe1�a� � e2�a��a � �1ÿ r��pe1�a��a�
subject to: e1��� � e2��� � 1;

e1���; e2��� 2 f0; 1g:
�3�

A Nash equilibrium in investments is given by a triplet �e�1�� ; ��; e�2�� ; ��; p�
if i) given p�e�1�a; p�; e�2�a; p�� solves (3), for any a and ii) p � pe where pe

satis®es (2) given �e1���; e2���� � �e�1�� ; p�; e�2�� ; p��. In other words, e�1�� ; p�;
e�2�� ; p� maximizes utility when the price is p and p clears the market for these
investment strategies.

Before characterizing the equilibria of the investment stage, de®ne
nRL � l�1; �a� (i.e., nRL is the mass of the risk-loving agents).

Theorem 1 Equilibria of the investment stage, �e�1��; ��; e�2��; ��; p�, exist and
satisfy:

i) p 2 �p; �p� where p � r1=a and �p � r1=�a,

ii) p
<
�
>

8<:
9=;r as nRL

<
�
>

8<:
9=;x�2�r� and

iii) if p < r1=a then e�2�a; p� � 1, if p > r1=a then e�2�a; p� � 0.
Furthermore, the equilibrium price and the aggregate level of investment are
unique.

Proof. I ®rst show that any equilibrium of the investment stage must satisfy
iii) and then show that given iii) the investment stage has an equilibrium with
a unique price and aggregate investments. Finally, I prove i) and ii).

iii) each agent's expected utilities from investing and not investing is
g�p�ar and g�p�apa. Let p � r1=a be the price at which an individual of type a
is indi�erent between investing and not investing. Hence if p < r1=a then
e�2�a; p� � 1 and if p > r1=a then e�2�a; p� � 0.
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Now, to prove the existence of an equilibrium and the uniqueness of price
and aggregate investments, note that any equilibrium of the investment stage
must satisfy iii). It will be useful here to de®ne the critical value
a��p� � ln r= ln p. Given p, any agent of type a < a��p� prefers not to invest
and any agent of type a > a��p� prefers to invest (i.e., a��p� solves p � r1=a).
For a given population distribution, this implies that the mass of agents who
invest, l�a��p�; �a�, is decreasing in p. Hence the aggregate investment func-
tion, I�p� � R �a

a e�2�a; p�dl�a� � l�a��p�; �a�, must be decreasing and continu-
ous in p. Next, from the (2) it can be seen that for a given aggregate
investment level, I � R �a

a e2�a�dl�a�, the implicit function pe�I� must satisfy:
x�2�pe�pe=��1ÿ x�2�pe��r� � I=�1ÿ I�. Since @x�2=@pe � 0, pe�I� is continuous
and increasing in aggregate investment. Thus the composite function
I � pe : �0; 1� ! �0; 1� is continuous and decreasing and has a unique ®xed
point. Thus an equilibrium exists and price and aggregate investment are
unique.

i) Note that �p � r1=�a is the price at which agents of type �a are indi�erent
between investing and not investing. If p � �p then almost all agents strictly
prefer to invest nothing and hence everyone gets zero utility. All agents
would thus prefer to invest since they could then achieve in®nite expected
utility. Thus an upper-bound on the equilibrium price is �p. Similarly, the
equilibrium price is bounded below by p � r1=a. Since p < �p, p 2 �p; �p�.

ii) Note from (2) and the optimal investment strategies, iii), that when
p � r, nRL � x�2�r�. W.l.o.g. suppose that p < r. Using the equilibrium in-
vestment strategies, solve the market clearing condition for good 2 at prices p
and r for x�2�p� and x�2�r�.

x�2�p� �
r
R 1

a e�2�a; p� dl� nRL
� �

R 1
a �pe�1�a; p� � re�2�a; p�� dl� rnRL

�4�

x�2�r� �
rx�2�r�

r
�5�

Suppose that nRL � x�2�r�. This implies that the top of the right hand side of
(4) is strictly greater than the top of the right hand side of (5) since for
a 2 �a��p�; 1�, e�2�a; p� � 1. Furthermore, since p < r, the bottom of the right
hand side of (4) is strictly less than r, the bottom of the right hand side of (5).
Hence, the right hand side of (4) is greater than the right hand side of (5).
Since @x�2=@p � 0 it must be that p > r, a contradiction. Therefore
nRL < x�2�r�. The proof of the converse is similar. j

Parts i) and ii) characterize the equilibrium prices. First, as the likelihood
of a successful investment decreases, the band in which the equilibrium price
ratio must reside moves downwards. That is, in order to induce investment
the reward for investing must be su�ciently high, relative to that for not
investing. Second, the value of good 1 is low when there are relatively few
risk-loving types and high when there are relatively few risk-averse types.
Finally, �p � 1 so that the return from a successful investment is always
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greater than that from not investing, however, the expected return may be
greater or less than that of not investing, depending on the relative numbers
of agents participating in each activity.

Part iii) characterizes individual investment decisions given price ± the risk-
averse invest if the expected return from investing is relatively high and the risk-
loving don't invest only if the expected return from investing is low. In general,
risk-loving types are more likely to invest than risk-averse types. Finally,
although equilibrium investment strategies are not unique (i.e., one measure-
zero type is indi�erent between investing and not investing), price and aggre-
gate investment are unique and hence the equilibrium is almost unique.

Finally, given p, the functions e�1�� ; p� and e�2�� ; p� are discontinuous at
most at one a and so are measurable. Letting ei��� � e�i ��; p� justi®es the
assumption of Section 3.

At this point it is useful to refer to the Kihlstrom and La�ont (1979)
welfare result which says that in an economy which has institutional con-
straints on risk trading, e�ciency is achieved only if all investors are risk
neutral. In the current model, depending on the distribution of risk attitudes,
aggregate investment will in general be inappropriate and as a result, the
allocation of risk will be ine�cient.

5 The evolution of risk attitudes

So far, the above analysis has been purely static. Now suppose that the
population evolves in response to market rewards, according to the discrete
time replicator dynamic. Employing the properties of the investment and
exchange equilibrium and the law of large numbers, type a average ®tness in
period t is ft�a� � g�pt��pte�1�a; pt� � re�2�a; pt��. Hence the evolutionary
population dynamics equation (1) becomes:

lt�1�A� �
R

A�pte�1�a; pt� � re�2�a; pt�� dlt�a�R �a
a �pte�1�a; pt� � re�2�a; pt�� dlt�a�

�6�

for all measurable A � �A and where g�pt� has been factored out and cancelled
from both the numerator and denominator. Since e�1�a; pt�; e�2�a; pt� � 0,
e�1�a; pt� � e�2�a; pt� � 1 and pt is bounded, it is clear that if lt is an atomless
probability measure with support �A, then lt�1 is also an atomless probability
measure with support �A. Notice that the propagation of each type depends
only on the average value of its `endowment' or wealth ± the relative frequency
of a type increases if its wealth is greater than the average population wealth.

A population distribution, lt with support �A is stationary if and only if
lt�1�A� � lt�A� for all measurable A � �A, where lt�1 follows (6). Let M be
the family of such probability measures that are atomless. De®ne pl to be the
equilibrium price, given l.

Theorem 2 An atomless probability measure, l with support �A is an element of
M if and only if pl � r or equivalently if and only if l�1; �a� � x�2�r�. Fur-
thermore, if l1 is atomless, and lt follows (6) then lt ! l for some l 2M.
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Proof. Let l1 be an atomless probability measure with support �A and let lt
follow (6). De®ne pt to be the equilibrium price that obtains if the population
distribution is lt.

The strategy of the proof is as follows. 1) Characterize the set of sta-
tionary population distributions ± every element of this set will have the
property that the mass of the risk-loving types is equal to x�2�r�. 2) Show that
the mass of the risk-loving types, nRL

t , converges. 3) Show that pt ! r and
nRL

t ! x�2�r�. 4) Show that lt ! l 2M.
1) Suppose l is stationary. By examining (6) it must be that either pl � r

or else for some i, ei�a; pl� � 1 for almost all a. Since not all types choose the
same action (from Theorem 1), it must be that pl � r. Conversely, if pl � r
then by (6), l must be stationary.

Using Theorem 1 and examining the market clearing condition for good 2
(2), it can be seen that if l is such that pl � r then l�1; �a� � x�2�r�. Con-
versely, suppose that l�1; �a� � x�2�r� but pl 6� r. Without loss of generality
assume that pl < r. Then:

x�2�pl�
Z �a

a
�ple�1�a; pl� � re�2�a; pl�� dl�a� < rl�1; �a� �7�

< rl�a��pl�; �a� �8�

� r
Z �a

a
e�2�a; pl� dl�a� �9�

(7) follows by assumption because x�2�pl� < x�2�r� � l�1; �a� and becauseR �a
a �ple�1�a; pl� � re�2�a; pl��dl�a� < r, (8) follows because when pl < r,

a��pl� as de®ned in the proof of Theorem 1 is strictly less than 1, (9) also
follows from Theorem 1 because for a > a��pl�, e�2�a; pl� � 1 and for
a < a��pl�, e�2�a; pl� � 0. This contradicts the market clearing conditions
(i.e., the left hand side of (7) must equal (9)) and therefore pl � r.

W.l.o.g., assume for the remainder of the proof that l1 is such that
p1 < r.

2) First I show that if l1 is such that p1 < �>�r then nRL
t is an increasing

(decreasing) sequence bounded above (below) by x�2�r�. Given the equilib-
rium investment strategies,

nRL
t�1 � lt�1�1; �a� �10�
� rnRL

tR 1
a �pte�1�a; pt� � re�2�a; pt�� dlt � rnRL

t

�11�

<
r
R 1

a e�2�a; pt� dlt � nRL
t

� �
R 1

a �pte�1�a; pt� � re�2�a; pt�� dlt � rnRL
t

�12�

� x�2�pt� �13�
� x�2�r� �14�

(11) follows from the de®nition of the population dynamic (6) and Theorem
1, (12) comes from adding the term r

R 1
a e2�a� dlt�a� to the numerator of (11),
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(13) follows from (4), and (14) follows from the fact that x�2��� is increasing.
Hence nRL

t�1 < x�2�r�. Finally, (11) and the fact that pt < r implies that
nRL

t < nRL
t�1. Therefore nRL

t is an increasing sequence bounded above by x�2�r�.
Since nRL

t is monotonic and bounded, it converges.
3) By examining (11), it can be seen that since e�1�a; pt� � 1 for all

a < a��pt�, nRL
t converges only if either pt ! r or nRL

t ! 1. Since part 2) of the
proof implies that nRL

t < x�2�r� for all t and that x�2�r� < 1 (i.e., consumption
of both goods must be positive in equilibrium, so x�2�r� < 1), it must be that
pt ! r. Noticing that the market clearing condition for good 2 (equation (2))
is continuous in price, if pt ! r then nRL

t ! x�2�r�.
4) The strategy here will be as follows. First show that for any interval

I � �1; �a�, lt�I� converges. Then for any a < 1 and any interval I � �a; a�,
show that lt�I� converges. Next, for any measurable A � �A, show that lt�A�
converges. Call that convergent point l�A�. It is clear that l so de®ned is a
probability measure with support �A and that lt !v l. Lastly, show that l has
support �a. Since every lt is atomless, l must be atomless and l 2M.

Let ft�a� � pte�1�a; pt� � re�2�a; pt� and ct �
R �a

a ft�a� dlt�a�. Rede®ne (6) as
a density function: dlt�1�a� � �ft�a�=ct� dlt�a�. Since pt�n < r, ft�n�a� � r
for any n � 0 and any a > 1. Hence,

lt�n�1; �a� �
Z �a

1

ft�nÿ1�a�ft�nÿ2�a� � � � ft�a�
ct�nÿ1ct�nÿ2 � � � ct

dlt�a�

� rn

ct�nÿ1ct�nÿ2 � � � ct
lt�1; �a� :

But lt�n�1; �a� ! x�2�r� as n!1. Since lt�1; �a� > 0,

lim
n!1

rn

ct�nÿ1ct�nÿ2 � � � ct
� x�2�r�

lt�1; �a�
:

Therefore for any interval I � �1; �a�,

lt�n�I� �
rn

ct�nÿ1ct�nÿ2 � � � ct
lt�I�

also converges as n!1.
Now consider any a < 1 and any interval I � �a; a� � �a; 1�. Since

a��pt� ! 1, then for su�ciently large t, e�1�a; pt� � 1 for all a 2 I, implying
that ft�a� � pt or

lt�n�I� �
Z
I

pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct
dlt�a�

� pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct
lt�I� :

Consider the sequence:

pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct

� �1
n�0

:

Risk and evolution 337



This is a decreasing sequence since for every t0 � t, pt0=ct0 < 1. Since it is
bounded below by zero, it converges so that for any a < 1 and anyI � �a; a�,
lt�n�I� converges as n!1.

Next, let A � �A be a measurable set. De®ne a sequence of real numbers fzmg
such that z1 � a, zm�1 > zm and zm ! 1. It clearly follows that the intervals
Z1 � �z1; z2� and Zm � �zm; zm�1�, m � 2, are disjoint and

S1
m�1 Zm � �a; 1�. For

each m, Zm � �a; a� for some a < 1 and hence lt�Zm� converges. By the
reasoning in the previous paragraph, lt�A \ Zm� also converges. Similarly,
for I 2 �1; �a�, lt�A \I� converges. Therefore,

lt�A� � lt

[1
m�1

Zm [ �1; �a�
 !

\ A

 !

�
X1
m�1

lt�Zm \ A� � lt��1; �a� \ A�

converges. For all measurable A � �A de®ne l�A� to be this limit. It is easy to
see that l so de®ned is a probability measure with support �A. Hence lt !v l.
Since every lt is atomless, vague convergence implies that l is atomless
(Chung, 1974).

Probability measure l has support �A if and only if for any a 2 �A and any
� > 0, l�N�a; ��� > 0. First, consider a � 1. It is clear from above that
lt�N�a; �� \ �1; �a�� > 0 is an increasing sequence so l�N�a; ��� > 0. Second,
for a < 1, the decreasing sequence

pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct

� �1
n�0

is part of

lt�n�N�a; �� \ �a; a�� �
Z

N�a;��\�a;1�

pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct
dlt�a�

� pt�nÿ1pt�nÿ2 � � � pt

ct�nÿ1ct�nÿ2 � � � ct
lt�N�a; �� \ �a; a��

for some a < a < 1 and su�ciently large t. Hence if l�N�a; �� \ �a; 1�� � 0 for
any a < 1 it must be true for every a < 1. (I.e., the convergence of any
sequence is driven by its tail and the tail of every sequence here is identical.)
Since l is atomless, this would contradict l�a; 1� � 1ÿ nRL > 0. Therefore l
has support �A.

Since l�1; �a� � limt!1 lt�1; �a� � x�2�r�, l 2M. j

Theorem 2 demonstrates that all stationary distributions have the prop-
erty that the masses of the risk-averse types and the risk-loving types depend
only on the ®tness function and the probability of a successful investment.
These stationary distributions are such that the risk-averse do not invest and
the risk-loving invest. Furthermore, it immediately follows that for any
stationary distribution, l 2M, there exists an initial distribution, l1, such
that lt !v l. More importantly, these stationary distributions are stable in
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the sense that if a mutation occurs, the population will converge to another
stationary distribution.

It will also be interesting to consider population distributions with sup-
port over some subsets of the following type, A1 � �a; 1� and A2 � �1; �a�. It
follows from Theorem 2 that with small mutations, no distribution with
support A1 or A2 can be stable.

Corollary 1 Let l� be an atomless distribution with support A1 � �a; 1� or
support A2 � �1; �a�. Let � > 0 and l1 be an atomless perturbation of l� with
support �A and where l1�Ai� � l��Ai� ÿ � and l1� �Aÿ Ai� � �. If l1 follows (6)
then lt ! l 2M.

Finally, given the model of investment and exchange, the distribution
over preferences can be examined for those which are optimal among all
feasible distributions. As I now demonstrate, all stationary, atomless distri-
butions are e�cient.

Theorem 3 Suppose that l is an atomless probability measure with support �A.
Measure l results in an e�cient allocation if and only if l 2M.

Proof. It is clear that an allocation is e�cient if and only if it maximizes
aggregate or average ®tness. Let l 2M. In a market economy, with identical
homogeneous ®tness functions, all agents consume goods 1 and 2 in the same
proportion. Hence if aggregate consumption maximizes aggregate ®tness
then average ®tness is also maximized. With the law of large numbers, the
expected production of good 2 is equal to realized production so let rE2 be
the production of good 2 when E2 is aggregate investment. Optimal E2 sat-
is®es, r � f1=f2. This holds at any stationary point since p � f1=f2 when
consumers maximize utility and p � r at all stationary points. Hence ag-
gregate consumption at stationary distributions maximizes aggregate ®tness
and therefore average ®tness.

Conversely, suppose l is atomless and that average ®tness is maximized
with population distribution l. Since l maximizes average population ®tness,
f1=f2 � r. Consumer utility maximization implies that p � f1=f2. Therefore
p � r and l 2M. j

Hence, not only does this evolutionary system converge to a stationary
distribution but these stationary population distributions are e�cient. Even
though all investors are not risk-neutral, e�ciency is achieved because in the
aggregate, the economy behaves as if the entire population were risk-neutral.
In particular, aggregate investment is identical to that which would be chosen
by a population of risk-neutrals.5

Kihlstrom and La�ont (1979) showed that for a given distribution of
preferences, the equilibrium is e�cient only if all entrepreneurs are risk-

5 As if risk-neutrality is robust to the notion that the probability of a successful investment can

change over time. Take an example where r alternates between r1 and r2. Eventually, risk-averse

and risk-loving agents alternate between doing well and doing poorly. However, risk-neutral

agents always do well.
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neutral and hence, for most distributions, their equilibrium is ine�cient. In
general, for an arbitrary distribution of preferences, the static equilibrium of
the current paper is also ine�cient. However, the introduction of evolu-
tionary dynamics to the general equilibrium model allows risk preferences to
adjust over time, towards an e�cient distribution. Obviously, if perfect
insurance were available, the static outcome would be e�cient and the
evolutionary model would play no role. However, perfect insurance markets
do not always exist (e.g., moral hazard). In this case, even in the absence of
insurance, evolutionary pressures will result in long run e�ciency.

6 An example with two types

Assume that there is a risk-averse and a risk-loving type with aRA < 1 < aRL

with the proportion of risk-averse and risk-loving types being nRA and nRL.
With a distribution consisting of two atoms, it is no longer true that each
type chooses the same action so let ~nRA and ~nRL be the masses of risk-averse
types and risk-loving types that invest.

With two types, the market clearing conditions for goods 1 and 2 are:

x�1�pe���nRA ÿ ~nRA�pe � ~nRAr� �nRL ÿ ~nRL�pe � ~nRLr�
� �nRA ÿ ~nRA� � �nRL ÿ ~nRL�

x�2�pe���nRA ÿ ~nRA�pe � ~nRAr� �nRL ÿ ~nRL�pe � ~nRLr�
� r�~nRA � ~nRL�:

�15�

Gross substitutability again implies existence and uniqueness of the com-
petitive equilibrium.

A Nash equilibrium in investments is a triplet �~nRA; ~nRL; p� such that
i) �~nRA; ~nRL� are such that all agents solve (3), given p, ii) p � pe where pe

satis®es (15), given �~nRA; ~nRL�.
Proposition 1 There exists a unique equilibrium, �~nRA; ~nRL; p�, of the investment
stage where:

i) p 2 �p; �p� where p � r1=aRA
and �p � r1=aRL

,

ii) p
<
�
>

8<:
9=;r as nRL

<
�
>

8<:
9=;x�2�r�,

iii) if

p � p

p 2 �p; �p�
p � �p

8><>:
9>=>;

then

~nRL � nRL and ~nRA is such that p clears the market:

~nRA � 0 and ~nRL � nRL:

~nRA � 0 and ~nRL is such that �p clears the market:

8><>:
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The two types version of the population dynamics equation is thus:

nRL
t�1 �

nRL
t ÿ ~nRL

t

ÿ �
pt � ~nRL

t r

nRA
t ÿ ~nRA

t

ÿ �
pt � ~nRA

t r� nRL
t ÿ ~nRL

t

ÿ �
pt � ~nRL

t r
: �16�

As before, there is a unique stable and stationary distribution that is
e�cient (i.e., when nRL � x�2�r�). There are two additional stationary points
(0 and 1), however, neither is stable. For example, at nRL � 0, p < r so that
the monetary payo� to risk-lovers is greater than that of risk-averse agents
(i.e., r > ��nRA ÿ ~nRA�pt � ~nRAr�=nRA since ~nRA < nRA).

Proposition 2 When nRL � 0�1�, the average ®tness of risk-averse (risk-loving)
agents decreases if a small contingent of risk-loving (risk-averse) individuals
enters the population.

Proof. When nRL � 0 we know that p < r. The average ®tness of risk-averse
individuals when p < r is g�p���nRA ÿ ~nRA�p � r~nRA�. When nRL < ~nRL�,
~nRA � ~nRL� ÿ nRL so that ®tness becomes g�p���1ÿ ~nRL��p � �~nRL� ÿ nRL�.
Di�erentiating with respect to nRL yields:

g0�p� 1ÿ ~nRL�ÿ �
p � ~nRL� ÿ nRL

ÿ �
r� g�p� 1ÿ ~nRL�ÿ �ÿ �� � dp

dnRL ÿ g�p�r :

The ®rst term is zero since when nRL < x�2�r�, price is constant at p. The
second term is always negative and hence for small nRL, the risk-averse types
are made worse o� by the entry of a small contingent of risk-loving types.
The proof for nRL � 1 is identical. j

Although with the introduction of a small contingent of risk-loving
mutants, risk-averse agents are made worse o� in terms of expected ®tness,
they are no worse o� in terms of expected utility. To see this, note that price
is constant at p, so risk-averse agents are indi�erent between investing and
not investing and hence they are no worse o�, subjectively, by the entry of
a small contingent of risk-loving agents.

Finally, a population of risk-averse (risk-loving) types, invaded by risk-
lovers (risk-averse), although initially they are made worse o�, over time, the
population adjusts and:

Proposition 3 At the stable population distribution, the risk-averse (risk-loving)
agents are better o� (in both an expected utility and an expected ®tness sense)
than if there were no risk-loving (risk-averse) individuals.

Proof. When nRL < x�2�r�, p < r. Since g�p�must be strictly decreasing in p so
that g�p�r > g�r�r (i.e., a risk-lover's ®tness is greater than her steady state
®tness). Recall that average population ®tness is maximized when p � r. Since
at p < r, risk-lovers earn ®tness greater than their steady state ®tness, the risk-
averse must be earning below population average ®tness which is less than the
steady state average ®tness. Furthermore, since at the steady state, a risk-
averse agent achieves, with certainty, a ®tness greater than her expected ®tness
at nRL � 0, her expected utility at the steady state must be greater as well. j
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Thus although risk-averse agents are initially made objectively worse o�
by the entry of risk-loving mutants, they are better o� as the population
converges to the steady state.

7 Related literature

The replicator dynamics used in the current paper are closely related to
Blume and Easley (1992) where the dynamics are driven by wealth accu-
mulation. To see this, suppose that if type a agents do well, instead of
increasing in number, they simply have greater wealth with which to invest.
That is, at the end of period t, each type a agent holds either pte�1�a; pt� or
pte�1�a; pt� � e�2�a; pt� units of wealth. On average, type a agents now hold
pte�1�a; pt� � re�2�a; pt� of wealth. Suppose �lt is a measure which describes the
distribution of wealth held by each type. The corresponding dynamic is
given by:

�lt�1�A� �
Z

A
�pte�1�a; pt� � re�2�a; pt�� d �lt�a� �17�

for all measurable A � �A. Let this wealth dynamic, �lt�1, be normalized by
average population wealth,

R
�A�pte�1�a; pt� � re�2�a; pt��d �lt�a�. The resulting

dynamic is a probability measure which is precisely the simpli®ed replicator
dynamic given by equation (6).

Given a dynamic of this type, Blume and Easley's result is that, for a ®nite
set of agents and provided beliefs are correct and discount factors are uni-
form, then agents with log utility functions eventually dominate the popu-
lation. In particular, long run investment behavior is risk-averse. As argued
in the introduction, this result depends on the fact that the return on identical
portfolios is perfectly correlated. Suppose for example that instead of assets,
there are S types of investment opportunities and that the return on invest-
ment opportunities of the same type are independently and identically
distributed. A Blume and Easley model with a continuum of agents would
clearly select for agents that are risk-neutral. Thus the degree of risk aversion
exhibited in stationary populations depends crucially on the degree of cor-
relation in returns. One would expect that the less the correlation, the closer
to risk-neutrality will be the behavior of the population.

Similar conclusions can now be drawn on the Kihlstrom and La�ont
(1979) ine�ciency result. That is, the long run of a model with i.i.d. risks
should ®nd agents behaving, in the aggregate, as if they are risk neutral and
thus the economy should exhibit no ine�ciency in aggregate investment.
However, as the degree of correlation increases, aggregate behavior becomes
more and more risk-averse and investment levels become more ine�cient.
Therefore even when the population distribution is able to adjust in response
to market rewards, the resulting allocation is in general not e�cient. How-
ever, this ine�ciency declines with a decline in the degree of correlation in
investment outcomes.
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