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“For Nash to deviate from convention is not as shocking as
you might think. They were all prima donnas. If a mathe-
matician was mediocre he had to toe the line and be conven-
tional. If he was good, anything went.”

– Z. Levinson from A Beautiful Mind
(Nasar, 1998, p. 144)

1. Introduction

Following in the tradition of Veblen’s (1899) analysis of conspicuous con-
sumption and Akerlof’s (1970) model of adverse selection, Spence’s (1973a;
1974) signaling model of overeducation showed how seemingly wasteful ac-
tions can be valued as evidence of unobservable quality. Signaling models
have since been applied to economic phenomena from advertising (Nelson,
1974) to financial structure (Ross, 1977), social phenomena from courtship
(Spence, 1973b) to gift exchange (Camerer, 1988), and biological phenom-
ena from a peacock’s plumage (Zahavi, 1975) to a tree’s autumn foliage
(Brown and Hamilton, 1996). These models conclude that in a separating
equilibrium “high” types (high in productivity, wealth, fecundity, or some
other valued attribute) send a costly signal to differentiate themselves from
lower types.

Contrary to this standard implication, high types sometimes avoid the
signals that should separate them from lower types, while intermediate types
often appear the most anxious to send the “right” signals. The nouveau
riche flaunt their wealth, but the old rich scorn such gauche displays. Minor
officials prove their status with petty displays of authority, while the truly
powerful show their strength through gestures of magnanimity. People of
average education show off the studied regularity of their script, but the well–
educated often scribble illegibly. Mediocre students answer a teacher’s easy
questions, but the best students are embarrassed to prove their knowledge of
trivial points. Acquaintances show their good intentions by politely ignoring
one’s flaws, while close friends show intimacy by teasingly highlighting them.
People of moderate ability seek formal credentials to impress employers and
society, but the talented often downplay their credentials even if they have
bothered to obtain them. A person of average reputation defensively refutes
accusations against his character, while a highly-respected person finds it
demeaning to dignify accusations with a response.

How can high types be so understated in their signals without diminish-
ing their perceived quality? Most signaling models assume that the only
information available on types is the signal, implying that high types will
be confused with lower types if they do not signal. But in many cases other
information is also available. For instance, wealth is inferred not just from
conspicuous consumption, but also from information about occupation and
family background. This extra information is likely to be noisy in that the
sender cannot be sure what the receiver has learned, implying that types of
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medium quality may still feel compelled to signal so as to separate them-
selves from low types. But even noisy information will often be sufficient
to adequately separate high types from low types, leaving high types more
concerned with separating themselves from medium types. Since medium
types are signaling to differentiate themselves from low types, high types
may choose to not signal, or “countersignal,” to differentiate themselves
from medium types.

We investigate such countersignaling behavior formally with a model that
incorporates extra, noisy information on type into a signaling game. We find
that countersignaling can emerge as part of a standard sequential equilib-
rium in which all players are forming rational beliefs and are acting ratio-
nally given these beliefs. Countersignaling is naturally interpreted as a sign
of confidence.1 While signaling proves the sender is not a low type, it can
also reveal the sender’s insecurity. Since medium types have good reason
to fear that the extra information on type will not differentiate them from
low types, they must signal to clearly separate themselves. In contrast, high
types can demonstrate by countersignaling that they are confident of not
being confused with low types.

The extra information on type in our model can be seen as a second signal
following the literature on multidimensional signals (Quinzii and Rochet,
1985; Engers, 1987). This literature is primarily concerned with whether
such signals can ensure complete separation when sender type varies in mul-
tiple dimensions. We assume that sender type varies in only one dimension
and concentrate instead on the opposite problem of how the extra informa-
tion can encourage partial pooling rather than complete separation.2 Given
the noisy nature of the extra information, it might seem that high types
should signal to further emphasize their quality. Instead, we find that the
information asymmetry arising from the noisy extra information can give
perverse incentives. Pooling with low types can become a signal in itself—a
way for high types to show their confidence that the extra information is
favorable to them by taking an action that is too risky for medium types.

Because countersignaling serves as a signal of confidence, we show that it
is more than just the absence of signaling by types whose high quality is al-
ready evident and who wish to save costs. First, when the extra information
sufficiently differentiates high types from low types, signaling can actually
lower a high sender’s payoff. Countersignaling can therefore arise even when
signaling is a desirable activity that high types would pursue in a perfect
information environment. Second, countersignaling reduces the efficiency
of receiver estimates of sender quality. Since countersignaling depends on
the existence of additional information on sender quality, eliminating this
information can actually increase estimate efficiency. Third, when there

1This point was made by Confucius (13:26, The Analects): “The Superior Man is self-
confident without being arrogant. The inferior man is arrogant and lacks self-confidence.”

2Hertzendorf (1993) also allows for two signals, one of which is noisy, but considers
only two types of senders, precluding the possibility of countersignaling.
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is a range of possible signals, high types not only choose a cheaper sig-
nal than medium types, but choose the same cheap signal being sent by low
types. Only by pooling with low types can high types successfully discourage
medium types from mimicking their behavior. Fourth, low signaling costs
can paradoxically reduce signaling by encouraging high types to countersig-
nal. In an educational context, an increase in the difficulty of an assignment
can therefore “challenge” high-ability students to stop countersignaling and
to send the signal of completing it. Finally, standard refinements do not pre-
dict a unique equilibrium but allow for multiple equilibria, including mixed
strategy equilibria where some high types signal while others countersignal
and “counter-countersignaling” equilibria where very high types differentiate
themselves from countersignaling high types by signaling.

The idea that signaling-like behavior need not be monotonically increas-
ing in quality has appeared in several areas. Teoh and Hwang (1991) develop
a model where firms decide whether to immediately disclose favorable earn-
ings information or wait for the information to be revealed by other sources.
Waiting makes higher quality firms look bad at first but eventually sepa-
rates them from lower quality firms which face more immediate pressure
to prove themselves. Bhattacharyya (1998) considers how large a dividend
firms should declare and finds that a screening model predicts that, con-
ditioned on earnings, higher quality managers will declare lower dividends
since they can use funds more efficiently than lower quality managers. Frem-
ling and Posner (1999) discuss how those with already high status may
have lower marginal returns from signaling than those who are not so well-
regarded.3 Hvide (1999) examines a labor market model in which education
serves partly to inform workers of their true abilities and finds that only
average types will choose to become educated. We differ from these analy-
ses in following a standard signaling model exactly with the sole exception
of allowing for the presence of additional information on sender type. This
added realism is sufficient to significantly expand the set of equilibria from
a standard signaling game, allowing for non-monotonic equilibria which are
robust to standard refinements.

Countersignaling theory takes the intuition of signaling and shows how
it can lead to quite different behavior than normally supposed, offering in-
sight into phenomena which appear inconsistent with the standard signaling
model. Of course, countersignaling is somewhat complex and there remains
the issue of whether economic agents are capable of such behavior. To help
answer this question we report results of an experimental test conducted in
the fall of 1995. The experiments involved two games with three types of
senders, high, medium and low quality, and a binary signal. The first game
is isomorphic to a standard signaling game and has a unique equilibrium in
which high and medium types signal. The second game is identical to the

3Our model supports such an argument in that high types benefit less from signaling
because they are already partially separated from low types.
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first game, except extra, noisy information on types leads to the unique equi-
librium involving countersignaling by high types. Experimental results tend
to support the theory’s predictions. From almost identical initial play in the
two games, subject behavior diverged to a large amount of countersignaling
by high types in the latter game and almost none in the former game.

2. A Simple Example

Continuing the signaling literature’s traditional emphasis on education,
consider the following stylized example. A prospective employee who had
good grades in high school is considering whether to mention her grades
in a job interview. Because grading standards are weak both medium and
high productivity employees (Highs and Mediums) are known to have good
grades while only low productivity employees (Lows) are known to have poor
grades. Since lying about grades involves the chance of getting caught, the
signal of mentioning good grades is costly to Lows but free to Mediums and
Highs. In addition to this signal, the interviewer will receive from a former
boss a recommendation regarding the prospective employee’s abilities. Lows
expect to receive bad recommendations from their old boss and Highs ex-
pect to receive good recommendations, while Mediums receive good or bad
recommendations with equal probability.

What should an interviewee do? Without the recommendation, Mediums
and Highs should clearly mention their good grades since it costs them noth-
ing and since the grades differentiate them from Lows. With the addition of
the extra information as embodied by the recommendation, the situation is
less obvious. Consider if the interviewer believes that only Mediums men-
tion their grades. Then if Mediums don’t mention their grades they take the
chance of either receiving a good recommendation and being thought of as
a High or receiving a bad recommendation and being thought of as a Low.
If Lows are sufficiently unproductive relative to Mediums and Highs, not
mentioning grades is too risky. Highs face a different situation because they
expect to receive a good recommendation. Since they need not worry about
being perceived as a Low, they face a clear choice between being perceived
as a Medium if they mention their grades and a High if they do not. Since
receiver beliefs are consistent with sender strategies and sender strategies
make sense given receiver beliefs, a countersignaling equilibrium exists in
which Highs show off their confidence by not mentioning their grades.4

A numerical example may help illuminate this case. Assume that produc-
tivity is 400, 700, and 900 for Lows, Mediums, and Highs respectively, and
that Lows and Highs are equally prevalent in the population. Given the in-
terviewer’s beliefs, Mediums can choose to receive either 700 by mentioning

4A partial pooling equilibrium is still possible in which both Mediums and Highs are
believed to signal, but if Lows are sufficiently unproductive relative to Mediums and Highs
and if the recommendations completely separate Lows and Highs, the equilibrium does not
survive the intuitive criterion (Cho and Kreps, 1987). Refinements are discussed further
in Section 3.
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their grades or (400 + 900)/2 = 650 by deviating from the equilibrium and
mimicking the Lows and Highs. Meanwhile, Highs are perfectly separated
from Lows so they receive 900 by countersignaling versus only 700 by de-
viating and looking like a Medium. Finally, as long as lying about grades
costs Lows at least 300, Lows do not gain from mimicking the Mediums so
a countersignaling equilibrium exists.

For simplicity this example assumes the signal of “bragging” about one’s
grades is free for both Mediums and Highs, but the results do not depend
on this assumption. Hence this model would still apply if we were looking
not just at the decision to report grades, but at the potentially costly choice
of whether to get good grades in the first place. Countersignaling would
still be an equilibrium even if signaling cost Mediums as much as 50 and
cost Highs as little as negative 200, meaning that Highs would prefer to get
good grades in a full information environment. Note that countersignaling
can break down not just if signaling is too attractive for Highs, but also if
signaling is too expensive for Mediums, e.g., the grading standard makes
it difficult for Mediums to get good grades. When signaling by Mediums
becomes too expensive and they stop signaling in equilibrium, Highs can no
longer separate themselves from Mediums by not signaling and must instead
signal in order to differentiate themselves. Therefore an increase in signaling
costs can actually induce Highs to start signaling.

Regarding the extra information embodied by the former boss’s recom-
mendation, the extremely dichotomous information structure simplifies the
problem, but noisier information can still support a countersignaling equi-
librium. In this example even if Lows receive a good recommendation 25%
of the time and Highs receive a bad recommendation 25% of the time, a
countersignaling equilibrium still exists. For an interviewee who doesn’t
mention grades, if a bad recommendation is observed the expected quality
of the interviewee is (3/4)400 + (1/4)900 = 525, while if a good recom-
mendation is observed the expected quality is (1/4)400 + (3/4)900 = 775.
Since Mediums expect good and bad recommendations with equal probabil-
ity, they still expect to receive 650 if they countersignal versus 700 if they
signal. Lows expect to receive a bad recommendation 3/4 of the time and
to receive a good recommendation 1/4 of the time, so they expect to receive
(3/4)525 + (1/4)775 = 587.5 by not signaling, giving them even less incen-
tive to deviate than in the previous case. For Highs their quality will be
estimated at (1/4)525 + (3/4)775 = 712.5 if they countersignal so deviating
is unprofitable and the countersignaling equilibrium still stands. Depending
on the exact model parameters, even a little bit of extra information can
disrupt the standard result that signals are non-decreasing in type.

In this example interviewees faced a simple binary choice of mentioning
their grades or not. While signaling decisions are often binary, in many cases
a wider range of signals is available, e.g., how expensive a car one buys. In
such cases it is less obvious that Highs will be willing to pool with Lows since
they have the extra option of breaking off and sending a higher signal that
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is not worthwhile for Mediums to mimic. The following section develops the
theory for this case, showing that Highs can still choose to countersignal
by pooling with Lows. In the final section we return to the simplest case
of a binary signal with three types to report on an experimental test of
countersignaling.

3. A Theory Of Countersignaling

In this sender–receiver game, we allow for three sources of receiver infor-
mation. First, there is common knowledge about the distribution of types
which incorporates all the background information which both senders and
receivers know. For instance, if it is common knowledge that all senders
are in a certain age group, then the distribution of types is conditioned on
this knowledge. Continuing to assume that there are “Low”, “Medium”
and “High” types, let the set of types be Q = {L,M,H} ⊂ R+ where
0 ≤ L < M < H and where types are distributed according to the probabil-
ity distribution f(q).

Second, the sender sends a signal s in the set S ⊂ R+ which is observed
by the receiver. The receiver observes this signal noiselessly, but does not
know which type sent the signal. This signal costs the sender c(s, q) where
c is increasing and convex in s and decreasing in q. To ensure there is some
signal that everyone would be willing to send, we assume 0 ∈ S and c satisfies
c(0, q) = 0. Further, we assume the standard “single-crossing property” that
cs(s, q) > cs(s, q′) for q < q′, i.e., not only is it less costly for higher types
to send any given signal than it is for lower types but the marginal cost of
that signal is also less. The assumption that the marginals cost of signaling
is always positive will be relaxed in Section 3.2.

Finally, and this is the unique aspect of the model, the receiver has extra,
noisy information about the sender’s type. This information is sent at no
cost to the sender and is exogenous in the sense that sender actions cannot
at this stage affect it. The sender knows that the receiver has this infor-
mation, but is unaware of exactly what the receiver knows. We model this
information as a noisy exogenous signal, x ∈ X, distributed according to the
conditional probability distribution g(x|q). Assume that g has full support
over X for any q.5 The conditional distribution of the exogenous signal is
common knowledge but the actual value of x is not known to the sender at
the time of sending the endogenous signal. In general, the exogenous signal
can be thought of as a summary measure of all the other noisy information
that the receiver will have about the sender at the time of making the sig-
naling choice. To reduce confusion with the signal, s, we will refer to the
noisy exogenous signal, x, as just “extra information.”

5The assumption of full support simplifies the discussion of out-of-equilibrium beliefs.
When the support of g is less than full, extreme information structures can yield unique
Intuitive Criterion countersignaling equilibria as in the simple example given in Section 2
and used in the experimental test in Section 4.
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The structure of the game is as follows. First, a sender is drawn randomly
from the distribution of types. The sender then sends the endogenous signal
without knowing what was or will be the realized value of the extra infor-
mation. Finally, the receiver observes both the extra information and the
sender’s signal. Given this information and her beliefs about sender signal-
ing strategies, the receiver rewards the sender with the sender’s expected
quality.6 This can be thought of as a reduced form of a game where senders
are workers and receivers are firms which simultaneously make wage offers.

Regarding the timing of signals, if all of the available extra informa-
tion is embodied in x and is known to both the sender and the receiver
prior to sending the endogenous signal then the model reduces to the stan-
dard signaling framework where the distribution of types is given by f̂(q) =
g(x|q)f(q)/

∑
q′∈Q g(x|q′)f(q′). Our assumption that the sender chooses s

without knowing the realized value of x is therefore necessary for a coun-
tersignaling equilibrium. We believe this assumption to be innocuous in
the sense that regardless of what is known prior to the choice of s, there
is always some information that is unknown to the sender. For example,
suppose that extra information, x, is observed by the sender and receiver
prior to the sender’s choice over s, but extra information y is unobserved by
the sender. If type is correlated with both x and y, then y plays the exact
same role as x in our model.

Except for a brief discussion of mixed strategy equilibria in Section 3.2,
we consider only pure strategy Nash equilibria, so a strategy is a mapping
between types and signals. Let sq represent the pure strategy of a sender
of type q and let the function µ(q|s, x) be a probability distribution rep-
resenting receiver beliefs about which types q send observed signal s and
information x. Receiver expectations of sender quality, given receiver be-
liefs and the observed signals are∑

q′∈Q

q′µ(q′|s, x).

Assuming sender risk-neutrality for simplicity, the gross of costs return to
type q of sending signal s is the sender’s expected perceived quality

(1) Eµ[q′|s, q] =
∫

x∈X


∑

q′∈Q

q′µ(q′|s, x)


 g(x|q)dx.

Definition 1. A pure strategy Perfect Bayesian Equilibrium is given by a
type contingent strategy profile sq and receiver beliefs µ(q|s, x) where

(i) Eµ[q′|sq, q]− c(sq, q) ≥ Eµ[q′|s′, q]− c(s′, q) for any s′ ∈ S and

6The signals are thereby assumed to play a purely informational role, having no effect
on the sender’s productivity or other valued attributes.
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(ii) for any s ∈ S, µ(q|s, x) is such that if {q′ | sq′ = s} 6= ∅ then

(2) µ(q|s, x) =
g(x|q)f(q)∑

{q′|sq′=s} g(x|q′)f(q′)
.

Condition (i) requires that agents choose signals as a best response to the
receiver’s beliefs. Condition (ii) requires that for any information set that
can be reached on the equilibrium path, the receiver’s beliefs are consistent
with Bayes rule and the equilibrium sender strategy.7

We follow the convention of calling a perfect Bayesian equilibrium a sig-
naling equilibrium if sq is strictly increasing in the sender’s type. Any equi-
librium in which sq is strictly non-monotonic will be called a countersignaling
equilibrium. Note that in the initial motivating example (Section 2) and the
later experimental test (Section 4) we use a binary signal so that the alterna-
tive to countersignaling is a weak signaling equilibrium in which sq is weakly
increasing in the sender’s type and strictly increasing at only one point.
Weak signaling equilibria can also survive in the richer signaling space we
use in this theory section, but for a clear comparison with the signaling lit-
erature we restrict our attention to signaling equilibria and countersignaling
equilibria.

As mentioned earlier, we require that the extra information, x, should
be in some sense informative. First note that in order for x to have any
information content in equilibrium, at least two types must send the same
signal. Otherwise, with perfect separation, the extra information plays no
role. A sender must believe that if she pools with senders of lower type she
will be rewarded more, on average, than them. That is, the sender may do
worse than lower types ex post once the receiver has observed the available
information, but the information is correct on average so that ex ante the
sender does better in expectation.

To define this notion more precisely, we need to first provide some ad-
ditional notation. Since, we are only interested in pure strategy equilibria,
this assumption will be defined in terms of sets of agents, Λ ⊂ Q, who pool
together.8 For any nonempty Λ, let q̄Λ(q) be a sender of type q’s gross ex-
pected payoff, given that the receiver uses Bayes rule and believes her to be
of some type belonging to Λ. That is,

(3) q̄Λ(q) =
∫

x∈X


∑

q′∈Λ

q′
g(x|q′)f(q′)∑

q′′∈Λ g(x|q′′)f(q′′)


 g(x|q)dx.

7Note that if g has less than full support, (ii) would need to be modified to read
“. . . such that if there exists a q ∈ {q′ | sq′ = s} such that g(x|q) > 0 then. . . ”

8That is, suppose the receiver only knows that the agent belongs to the set Λ with
priors based on f and may subsequently adjust those priors based on new information
(i.e., x).
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The term within the parentheses is the receiver’s Bayesian estimate of the
sender’s quality having observed x. Integrating over all x ∈ X yields a type-
q sender’s ex ante expected payoff from pooling with the agents in Λ. It is
easy to see that if Λ = {q′} for q′ ∈ Q (i.e., it is a singleton) then q̄Λ(q) = q′
for any q ∈ Q. That is, if q′ is the only type sending some signal s then
upon observing s the receiver must believe that the sender is of type q′.

We will consider the conditional distribution, g, to be informative if
and only if for any |Λ| ≥ 2 and for any q, q′ ∈ Q, whenever q < q′ then
q̄Λ(q) < q̄Λ(q′). A sufficient condition for this to hold is that x and q are
affiliated or, equivalently, that g(x|q) satisfies the monotone likelihood ratio
property. Note that types sending the same endogenous signal are imper-
fectly separated by the extra information since g has full support. This
implies that min Λ < q̄Λ(q) < maxΛ for all q ∈ Q and |Λ| ≥ 2.

3.1. Equilibria. In a signaling equilibrium, s = (sL, sM , sH), perfect sepa-
ration implies each type’s expected payoff is equal to her quality, Eµ[q′|sq, q] =
q for q ∈ Q. The distribution of the extra information, g(x|q), therefore plays
no role in equilibrium so the standard result for signaling games with cost
functions satisfying the single-crossing property still applies.

Proposition 1. Signaling equilibria always exist.

Note that the payoffs and signals in a signaling equilibrium are independent
of the distribution of the extra information, g(x|q). As we will see, this
distribution plays a significant role in the partial pooling that occurs in a
countersignaling equilibrium.

With only three types, a countersignaling equilibrium must have Lows and
Highs pooling so there are two candidate classes of pure strategy countersig-
naling equilibria: u-shaped equilibria and hump-shaped equilibria. Since the
former class can be ruled out by our informational assumptions,9 all coun-
tersignaling equilibria must be in the latter class. Suppose that senders play
strategy s∗ = (s∗, s∗M , s∗) where s∗ < s∗M . Let µ describe beliefs that are
Bayes consistent with playing s∗. Then the expected gross payoff to sender
q from signal s∗M is

Eµ[q′|s∗M , q] = M

and the expected gross payoff to sender q from signal s∗ is

Eµ[q′|s∗, q] =
∫

x∈X
(µ(L|s∗, x)L + µ(H|s∗, x)H)g(x|q)dx.

9Suppose s∗ = (s∗, s∗M , s∗) is a countersignaling equilibrium where s∗ > s∗M . Since s∗

is an equilibrium then both q̄{L,H}(L)−M ≥ c(s∗, L)− c(s∗M , L) and q̄{L,H}(M)−M ≤
c(s∗, M) − c(s∗M , M). Furthermore, since the cost function for Mediums is flatter than
that for Lows (the single-crossing property), s∗ > s∗M implies that c(s∗, L) − c(s∗M , L) >
c(s∗, M) − c(s∗M , M). However, this means that q̄{L,H}(L) − M > q̄{L,H}(M) − M , a

contradiction since q̄{L,H}(L) < q̄{L,H}(M).
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Since Lows and Highs send the same signal s∗ and since µ is Bayes con-
sistent, Eµ[q′|s∗, q] = q̄{L,H}(q). Therefore, by assumption, Eµ[q′|s∗, L] <
Eµ[q′|s∗,M ] < Eµ[q′|s∗,H].

In a standard signaling model the difference in the gross returns from
sending signals s∗M and s∗, namely M − Eµ[q′|s∗, q], is unaffected by the
sender type because Eµ[q′|s∗, q] ≡ Eµ[q′|s∗]. Since signaling costs are falling
in the quality of the sender, if Mediums found it advantageous to send
signal s∗M then so would Highs. In our framework on the other hand, M −
Eµ[q′|s∗, q] is falling in quality. Since the gains from signaling are lower for
Highs than Mediums, Highs may choose to not signal even though signaling
costs are also lower.

Proposition 2. A countersignaling equilibrium exists if q̄{L,H}(L) and
q̄{L,H}(M) are sufficiently small and q̄{L,H}(H) is sufficiently large.

Proof. See Appendix.

In other words, the extra information must be such that Mediums will tend
to look like Lows if they do not signal, but Highs will still tend to look like
Highs if they do not signal. If Lows and Mediums are insufficiently separated
the single-crossing property ensures that Mediums can always find a signal
that Lows do not want to mimic but that costs less than M − q̄{L,M}(M),
so Mediums will signal. And if Highs and Lows are sufficiently separated by
the extra information then Highs are better off not signaling than appearing
to be Mediums. These restrictions on the extra information are illustrated
more concretely in the following Proposition. As long as the distributions
g(x|L) and g(x|M) are sufficiently similar and the distributions g(x|L) and
g(x|H) are sufficiently dissimilar a countersignaling equilibrium exists.

Proposition 3. A countersignaling equilibrium exists if
∫
x∈X |g(x|L) −

g(x|M)|dx and
∫
x∈X g(x|L)g(x|H)dx are sufficiently small.

Proof. See Appendix.

Figure 1 illustrates the countersignaling equilibrium (0, s∗M , 0). Level sets
represent sender indifference between being various payoff/signal combina-
tions, where utility increases in a northwesterly direction. Following the
single-crossing property, the sets are flattest for Highs and steepest for Lows,
ensuring that the indifference curves of different types cross only once. The
intercepts represent the utility payoffs of each indifference curve. Thus in
this equilibrium, Highs get the greatest payoff, q̄{L,H}(H), while Lows get the
least, q̄{L,H}(L). According to level set l, Lows are just indifferent between
sending signal s∗M (pretending to be a Medium) and sending the equilib-
rium signal of zero (pooling with Highs). That is, s∗M is the minimum signal
that Mediums can send and deter Lows from mimicking them. The level
set h represents the utility received by a High from playing according to
equilibrium and not signaling. Highs are willing to pool with Lows as long
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Figure 1. Pareto dominant countersignaling equilibrium

as they get a greater payoff than from sending signal s∗M and pretending to
be a Medium, q̄{L,H}(H) > M − c(s∗M ,H)). This is true in our case since
indifference curve h is higher than ĥ. Finally, Mediums must prefer to send
signal s∗M than to send s = 0 and pretending to belong to Λ = {L,H}.
This holds since the intercept of m (her equilibrium payoff) is greater than
q̄{L,H}(M).

As with the standard signaling model, ours is subject to multiple equi-
libria. A substantial literature has developed in an effort to “refine” away
“undesirable” equilibria in signaling models (Banks and Sobel, 1987; Cho
and Kreps, 1987; Cho and Sobel, 1990). Contrary to the standard signaling
framework, refinements such as the Intuitive Criterion, D1 and D2 are un-
able to rule out pooling and partial-pooling equilibria.10 This can be seen
from the simplest two-type model. Without extra information Highs are
indistinguishable from Lows in a pooling equilibrium so they always have
an incentive to break away and send a signal that Lows would never mimic,
thereby implying that pooling cannot survive the Intuitive Criterion. With
the extra information this is no longer true. Highs are stochastically sep-
arated from Lows even as they pool with them, so they are less willing to

10Given that the standard refinements cannot eliminate signaling equilibria under the
standard model, such refinements will not eliminate signaling equilibria in our augmented
framework since such equilibria do not depend on any of the distributional information.
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bear the cost of sending the minimum signal that Lows would never mimic.
Moreover, the stochastic separation means that Lows gain less from pooling
than when there is no extra information. This implies that if we consider
the set of signals that Lows could never gain by sending, the minimum of
this set is larger than when there is no extra information. Since extra in-
formation makes breaking the pooling equilibrium both less rewarding and
more costly, a pooling equilibrium can survive the Intuitive Criterion if the
stochastic separation is sufficient.

This same logic of pooling by Highs and Lows applies to our three-type
case, except that it is even more costly for Highs to send a sufficiently large
signal that Mediums would never mimic. As a result, we find that under con-
ditions qualitatively identical to those given in Propositions 2 and 3, coun-
tersignaling equilibria continue to exist under the Intuitive Criterion, D1
and D2.11 In particular, the conditions for the existence of the Pareto dom-
inant countersignaling equilibrium are qualitatively identical. Such coun-
tersignaling equilibria might be, in terms of welfare, more appealing than
any signaling equilibrium. This is demonstrated formally for the Intuitive
Criterion as follows.

Proposition 4. If the Pareto dominant countersignaling equilibrium sur-
vives the Intuitive Criterion it Pareto dominates all signaling equilibria. In
particular, every type of sender is strictly better off under the Pareto domi-
nant countersignaling equilibrium.

Proof. See Appendix.

The argument is roughly as follows. Suppose that the Pareto dominant
countersignaling equilibrium does not Pareto dominate the Pareto domi-
nant signaling equilibrium (the Riley equilibrium). Since Lows benefit from
pooling with Highs and since Mediums can then send a lower signal to suc-
cessfully ward off Lows, it must be the Highs who are worse off. However,
suppose that Highs deviate and send their equilibrium signal from the Riley
equilibrium. With probability 1 they would be thought to be Highs since
Mediums would never be willing to send this signal. Since their signaling
payoff is greater than their countersignaling payoff, Highs have an incentive
to deviate from the countersignaling equilibrium by playing according to the
signaling equilibrium. So if the countersignaling equilibrium does not Pareto
dominate the Riley equilibrium it must not pass the Intuitive Criterion.

In practice Proposition 4 might overstate the efficiency of countersignal-
ing. We have assumed the receiver is risk neutral, but if the receiver is risk
averse or benefits from matching senders to particular jobs based on their

11Proofs are available at http://www.Theo.To/counter/refine.pdf or from the au-
thors upon request. Note that the value of q̄{L,H}(H) as shown in Figure 1 is the smallest
such value for which the countersignaling equilibrium depicted survives the Intuitive Cri-
terion, D1 and D2.
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quality, the loss in information to the sender in the countersignaling equi-
librium might exceed any cost savings to the senders. As discussed below,
inefficiencies can also result if signaling is to some extent a desirable activity.

3.2. Extensions. In the first three of the following subsections, let s =
(0, sM , sH) and s∗ = (0, s∗M , 0) represent the Riley equilibrium and the
Pareto dominant countersignaling equilibrium.

Productive Signaling. While the wasteful nature of signaling is often empha-
sized in the literature, many forms of signaling are, in moderation, produc-
tive or otherwise desirable. For instance, while education may be excessive in
a signaling equilibrium, it is often a preferred activity in moderation. When
signaling is to some extent desirable, countersignaling by Highs might be
inefficient because of insufficient signaling.

To illustrate the point in a simple manner, suppose we relax the condition
that signaling costs are strictly increasing in the signal. In particular, assume
that costs are initially decreasing for Highs but eventually increasing. For
Lows and Mediums the cost structure is unchanged. If signaling costs do
not decrease too rapidly for Highs the equilibrium (0, s∗M , 0) still exists even
though in a perfect information environment Highs would choose a strictly
positive signal. In other words, in a countersignaling equilibrium there can
be too little rather than too much signaling.

Bounded Signals. So far we have assumed that the signaling range has no
upper bound. While in many cases this might be quite reasonable, it might
be more realistic in other cases to include an upper bound on the highest
signal that can be sent, e.g., the best signal that a high school student can
send is to get straight A’s. Consider if there is some maximum signal s̄
so that S = [0, s̄]. If s̄ < sH then the signaling equilibrium cannot exist.
However, if s̄ ≥ s∗M then the countersignaling equilibrium still exists. Thus
by eliminating the possibility for a signaling equilibrium, putting an upper
limit on the signal can be considered conducive to countersignaling. Highs
cannot signal their capabilities relative to Mediums by sending a higher
signal, so the only alternatives are countersignaling equilibria and other
partial-pooling or pooling equilibria, all of which imply a loss of information
to the receiver.

Alternative equilibria. Real world signaling behavior may be more compli-
cated than the pure strategy equilibria we have derived in our simple three–
type example. For instance, even in situations conducive to countersignal-
ing, some high types may be observed to be countersignaling while others
may be observed to be signaling. Three means of getting more complicated
signaling behavior are i) to add more types, ii) to look at mixed strategy
equilibria or iii) to add a slightly more complicated information structure.
We briefly consider each of these possibilities in turn.
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Suppose there is a fourth type, H+ ≥ H for which signaling is completely
costless. This modification can yield a “counter-countersignaling” equilib-
rium where L, M and H types play according to s∗ and type H+ agents
send an arbitrarily large signal. The presence of H+ types has no effect on
equilibrium beliefs over L, M and H types but a sufficiently large signal,
s∗H+ , will deter imitation by any type even under beliefs which survive the
Intuitive Criterion, D1 and D2. Obviously, less extreme cost structures will
yield yet other types of counter-countersignaling behavior. For example, it
may be that rather than sending a higher signal, there may be equilibria
where H+ types pool with M ’s.

Returning to the three-type example, now consider the possibility that
senders play mixed strategies or that some proportion of each type plays
different strategies. In particular, consider the mixed strategy profile where
Lows and Mediums and 1−∆ of the Highs play according to s∗ = (0, s∗M , 0)
and the remaining ∆ of the Highs send a signal, ṡ∗H , at which they get
H and are indifferent between sending 0 and ṡ∗H . Since fewer high types
are now pooling with the low types, this will have the effect of reducing
q̄{L,(1−∆)H}(q) for all q ∈ Q. Provided that q̄{L,(1−∆)H}(H) ≥ M − c(s∗M ,H)
and q̄{L,(1−∆)H}(M) ≤ M−c(s∗M ,M), this strategy profile is clearly an equi-
librium. Furthermore, if q̄{L,(1−∆)H}(H) is sufficiently large, s∗ survives the
Intuitive Criterion, D1 and D2. Notice that when pure strategy countersig-
naling equilibria exist, there is in general a continuum of ∆’s with equilibria
where some Highs signal and some countersignal.

Note that more complicated signaling patterns can also arise when there
are multiple sources of extra information. Suppose, as discussed earlier,
that there are two sources of extra information, x and y. The former is
observed by both the sender and receiver and the latter is observed only
by the receiver. In this case, for each x ∈ X, the distribution of types is
f̂(q) = g(x|q)f(q)/

∑
q′∈Q g(x|q′)f(q′) and y plays the role of the extra in-

formation in our model. In other words, for each realization of x a different
game is played so that the same type q might signal or countersignal de-
pending on the realization of x and on the particular equilibria in the game
corresponding to that realization of x.12

Countersignaling with a continuum of types. When types form a continuum
and signals are continuous, non-monotonicities could arise in a variety of
forms. We present a simple example in which types of highest and lowest
quality send a zero signal while types within an intermediate range send the
same signals as in the fully separating Riley equilibrium.13 In particular,
assume that types are distributed uniformly over the unit interval, Q = [0, 1]
and that X = R and x = q + ε where ε is a random variable distributed

12The role of fully observed information in allowing for different equilibria conditional
on the information is analyzed by Spence (1973a) in the context of a regular signaling
game.

13This example is based on a suggestion by Barry Nalebuff.



TOO COOL FOR SCHOOL? 15

normally with zero mean and standard deviation 1/4. Consistent with the
single-crossing property, let the cost function be c(q, s) = s/q3.

In a separating equilibrium each type is believed to send a unique signal
and the extra information has no impact. Representing this mapping from
signals to receiver inferences of type by q̂(s), the return to a signal is then
q̂(s) − s/q3. Maximizing with respect to s gives dq̂(s)/ds = 1/q3. In equi-
librium, beliefs are consistent with actions so q̂(s) = q, implying q3dq = ds.
Integrating gives the family of solutions s = q4/4 + K, each of which is a
separating equilibrium. Of these the Riley equilibrium s = q4/4 is the only
reasonable solution since type q = 0 never benefits from sending a positive
signal.

We are interested in a countersignaling equilibrium where there are two
types 0 < qa < qb < 1 such that s∗q = q4/4 for q ∈ [qa, qb] and s∗q = 0
for q < qa and q > qb. Since the distribution of types is a continuum, let
µ(q|s, x) represent a probability measure in this section rather than a density
function. Bayes consistent receiver beliefs for s = 0 and x are therefore

dµ(q|0, x) =
φ(4(q − x))∫ qa

0 φ(4(q′ − x))dq′ +
∫ 1
qb

φ(4(q′ − x))dq′

where φ(·) represents the probability density function of a standard normal
distribution. For s ∈ (0, 1/4] we assume µ((4s)1/4|s, x) = 1, just as in the
Riley equilibrium. Since not all signals in this range are actually sent in
the countersignaling equilibrium, we are thereby assuming that if a signal is
observed which would not be sent in the countersignaling equilibrium, the
receiver believes it was sent by the type that would have sent it in the Riley
equilibrium. Finally, for s > 1/4, let µ(1|s, x) = 1. Given these beliefs, the
expected gross payoff to sender q from signal s = 0 is

Eµ[q′|0, q] =
∫ ∞

−∞

(∫ qa

0
q′dµ(q′|0, x)dq′ +

∫ 1

qb

q′dµ(q′|0, x)dq′
)

φ(4(x−q))dx.

The conditions for the marginal types to be indifferent are

Eµ[q′|0, q]− c(0, q) = q − c(q4/4, q) for q = qa, qb.

Solving numerically, one solution is qa ≈ 0.521 and qb ≈ 0.961. Further
calculations confirm types q < qa and q > qb prefer s = 0 to s = q4/4 and
types qa < q < qb prefer s = q4/4 to s = 0. The signal level stays at zero
for q < qa but then jumps up to track the Riley equilibrium over the range
[qa, qb], before falling back to zero for q > qb. Higher types not only save
costs by countersignaling, but since Eµ(q|0, qb) ≈ 0.728 > qa they are, in
expectation, estimated to be of higher quality than many types sending a
strictly positive signal.

4. A Test of Countersignaling

To investigate whether agents can countersignal, we ran a simple exper-
iment with two cells, one corresponding to a standard signaling game (the
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Player Type Number Cost of % Passing Test Productivity
(Skill Level) of Type Good Grade S cell C cell

High 4 −25 50 100 900
Medium 8 +25 50 50 700

Low 4 +350 50 0 400

Table 1. Characteristics of Player Types

S cell) and the other to a countersignaling game (the C cell). We use a
three–type model closely related to the example in Section 2.

4.1. Description of the Game. Both the S and C cells share the same
basic structure. We motivated the game to the subjects as an education
model in which students signal their skill levels to firms. There are three
types of student: High, Medium, and Low skill level. They signal in two
ways: by grades, which they choose, and by test scores, which are exogenous
and have a random component. After students have signaled, they are hired
by competitive risk–neutral firms, so each student receives a wage equal to
that student’s expected productivity, conditional on the student’s grade and
test score. The role of the firms is suppressed in our experiment; their role
is played by computer, rather than by human subjects.14

The parameters used in the game are shown in Table 1. The population
of students consists of 4 Highs, 8 Mediums, and 4 Lows.15 Grade is a binary
choice, either G (good) or B (bad). A bad grade is costless, while the cost
of a good grade varies inversely with skill level and in the case of Highs is
negative, i.e., Highs actually receive a direct benefit from signaling. Test
scores are also binary, either P (pass) or F (fail). Test scores do not depend
directly on grades. In the C cell the probability of passing is increasing in
skill level, while in the S cell, the probability is 0.5, irrespective of skill level.

Even though the exogenous signal is still present in the S cell, it is com-
pletely uninformative; there is no difference—even probabilistically—in the
extra information sent by the different types of student. This game thus
reduces to a standard signaling model in which higher–quality types signal

14The technique of automating some parts of a game in order to simplify an exper-
imental environment is quite common and has been done in a wide variety of settings,
including other signaling games (Cooper et al., 1997a,b), simple markets (Roth et al.,
1991), Cournot–Stackelberg duopoly games (Huck et al., 1999), common–value auctions
(Garvin and Kagel, 1994; Kagel and Levin, 1986), and asymmetric–information “lemons”
markets (Ball et al., 1991). Note that a consequence of our design is that the appropriate
equilibrium concept is now Nash equilibrium since all players are choosing simultane-
ously. Of course, any Nash equilibrium of this simplified game corresponds to a sequential
equilibrium of the original game with firms’ payoffs appropriately specified.

15Since the only decision–making agents will be the students, we use “student” and
“player” interchangeably.
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to distinguish themselves from lower–quality types; the unique Nash equi-
librium outcome of the S cell has all Highs and Mediums choosing a good
grade and none of the Lows doing so. In contrast, the extra information
in the C cell makes this a countersignaling environment. Lows always fail
the exam and Mediums expect to fail the exam half the time, so Mediums
can use good grades to differentiate themselves from Lows. Highs need not
distinguish themselves from Lows since Highs always pass and Lows always
fail. Instead, they are concerned with being mistaken for those Mediums
who pass. Since Mediums earn good grades, Highs react by earning bad
grades even though they would prefer a good grade in a complete informa-
tion environment. In the unique equilibrium is that Mediums choose good
grades while Highs and Lows choose bad grades.

Our design makes the test of countersignaling difficult in two ways. First,
we test for countersignaling when Highs have negative signaling costs, i.e.,
they receive a bonus for signaling, implying they would always signal in a
perfect information environment. Second, we give the games a somewhat
normative context in which signaling is described as getting a “good grade”
and not signaling as getting a “bad grade.”

4.2. Experimental Procedures. The experiment consisted of four S ses-
sions and four C sessions. Subjects were mostly undergraduates at the Uni-
versity of Pittsburgh. Sessions lasted for roughly 90 minutes and consisted
of one practice round and 12 rounds, except for one S session which, due to
time constraints, consisted of one practice round and 10 rounds.16 Subjects
were not told how many rounds would be played, though they probably had
some idea of when they were close to the end of the game since they were told
the experiment would last no longer than 90 minutes. The experiment was
conducted with pen and paper. Instructions were read aloud to subjects,
and a table similar to Table 1 (but with only the information concerning the
cell they were in) was written at the front of the room. Subjects were given
record sheets with spaces to write for each round their skill level, grade, test
score, salary (called “gross payoff”), cost of earning a good grade,17 and net
payoff. In each round, each subject drew one of sixteen slips of paper, on
which were printed a skill level and test score, and a space for subjects to
write their choice of grade. The slips of paper were prepared in advance
and were repeatedly folded and sealed so that test scores could not be seen
without breaking the seal. Skill levels and test scores were block–randomly
assigned to the slips of paper, so that, in the S cell for example, in each
round there were exactly 4 Mediums that passed the test, 2 Lows that failed
the test, and so on.

16Keeping the number of rounds small has the advantages that subjects have time to
think about their decisions and that payoffs per decision are relatively high.

17Because Highs have a negative “cost” of earning a good grade, we used the phrase
“bonus or penalty” in the experiment.
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Grade
G B

#High: 2 #High: 0
P #Medium: 4 #Medium: 0

#Low: 0 #Low: 2
Test Salary: 734 Salary: 400
Score #High: 2 #High: 0

F #Medium: 4 #Medium: 0
#Low: 0 #Low: 2
Salary: 734 Salary: 400

(a) Signaling Cell

Grade
G B

#High: 0 #High: 4
P #Medium: 4 #Medium: 0

#Low: 0 #Low: 0
Test Salary: 700 Salary: 900
Score #High: 0 #High: 0

F #Medium: 4 #Medium: 0
#Low: 0 #Low: 4
Salary: 700 Salary: 400

(b) Countersignaling Cell

Table 2. Sample of post-round information given to subjects

In each round, each subject copied her skill level onto her record sheet,
chose her grade, and wrote this grade on her record sheet and on the slip
of paper. After this was done, a monitor came to the subject’s desk and
watched her break the seal, revealing her test score. The subject wrote her
test score on her record sheet and the monitor collected the slip of paper.
When all the slips had been collected, the distribution of skill levels and the
salary corresponding to each (grade, test score) pair were posted at the front
of the room. Examples of this posted information are given in Tables 2(a)
and 2(b). Subjects then wrote their salaries on their record sheets, and
calculated and recorded their net payoffs. The next round then began. The
posted information remained posted until it was replaced by information
from the following round.

At the end of the session, one of the non–practice rounds was randomly
selected from those played, and subjects were paid in cash their net payoffs
from that round at the exchange rate of 100 points/$1.00, in addition to a
$5.00 participation fee. Average earnings were approximately $11.00.



TOO COOL FOR SCHOOL? 19

C Sessions S Sessions
High Medium Low High Medium Low

Round 1 15/16 24/32 2/16 16/16 25/32 3/16
(.938) (.750) (.125) (1.000) (.781) (.188)

Rounds 1–3 47/48 77/96 6/48 47/48 74/96 12/48
(.979) (.802) (.125) (.979) (.771) (.250)

Rounds 10–12 27/48 72/96 2/48 38/40 76/80 9/40
(.562) (.750) (.042) (.950) (.950) (.225)

Round 12 7/16 23/32 1/16 11/12 23/24 3/12
(.438) (.719) (.062) (.917) (.958) (.250)

Equilibrium
Prediction .000 1.000 .000 1.000 1.000 .000

Table 3. Aggregate Early– and Late–Round Frequency of Signaling

4.3. Experimental Results. Figures 2(a) and 2(b) show the relative fre-
quencies of good grades in the two cells.18 Early–round play is very similar
in the two cells, but that play begins to diverge thereafter as Highs choose
good grades less and less frequently in the countersignaling cell. Mediums
in the signaling cell increase the frequency of choosing a good grade some-
what, with no such increase in the countersignaling cell. Lows also appear
to choose good grades less and less frequently in the countersignaling cell,
but this difference is slight.

Table 3 reports the frequency with which players in the two cells chose G
in early and in late rounds.19,20 Thus, at least in early rounds, players do
not seem to behave in accordance with the equilibrium predictions. How-
ever, some aspects of play in later rounds are consistent with the theory’s
predictions. Recall that the Nash equilibrium predicts Highs should choose
G more often in the S cell than in the C cell, while play of Mediums and

18The raw data and instructions from the experiment are
available at http://www.Theo.To/counter/experiment.xls and
http://www.Theo.To/counter/instructions.pdf or from the authors upon request.

19Play is remarkably similar across the four S sessions, and for the most part is similar
across C sessions. The one exception is Highs in the C cell: the frequency of good grades
is 58.3%, 68.8%, 79.2%, and 95.8% in the four C sessions, while no other type in either cell
has a range of 20 percentage points or more. According to one–tailed permutation tests
(Siegel and Castellan, 1988) on the session–level data, there are no significant differences
(at even the 10% level) in early–round frequencies of G between the S and C cells.

20Permutation tests make no assumptions about the underlying population distribu-
tions, unlike the commonly–used Wilcoxon–Mann–Whitney test, which gives broadly sim-
ilar results in this case, but is inappropriate because it assumes that second– and higher–
order moments of the population distributions are the same and can therefore give rejec-
tions of the null hypothesis based solely or partly on differences in, for example, variances.
See Siegel and Castellan (1988) for a discussion of this issue, as well as more thorough
descriptions of the nonparametric statistical tests used in this paper.
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Lows should be the same in both cells. In rounds 10–12 Highs are far more
likely to play G in the S cell than in the C cell, and this difference is signif-
icant (permutation test, p < .05) However, Mediums and Lows also play G
significantly more often in the S cell than in the C cell (permutation test,
p < .05).21

Because not only Highs but also Mediums choose G more often in the
C cell than in the S cell, differences between the play of Highs and that of
Mediums in the C cell are smaller than one would hope, even in late rounds
of the experiment. (Differences in the S cell are even smaller, but that
is exactly the equilibrium prediction.) A chi–square test of the difference
between the play of Highs and that of Mediums in round 12, using the
individual–level data, gives a p–value of about 0.12, which is suggestive,
but not significant at standard levels. A robust rank–order test, using the
individual–level data from rounds 10–12, gives a p–value of 0.0643.22 Using
session–level data, rather than individual–level data, yields no significant
differences between the play of Mediums and that of Highs in the C cell.

4.4. Discussion. The only difference between our S and C cells is that in
the S cell the extra information is uninformative, while in the C cell it is
informative. There is no difference in early–round play between the cells, but
eventually differences emerge in the direction predicted by countersignaling
theory, though not always significant at standard levels. The patterns of
behavior observed can best be described with the following “learning” story.
In the S cell, bad grades are a dominant strategy for Lows; by choosing
bad grades, they earn at least 400, while good grades earn them at most
383.33. Indeed, we see that Lows, for the most part, quickly learn to get
bad grades. Once most Lows are choosing bad grades, Mediums and Highs
do best by earning good grades, and they learn this quickly, too. Play thus
moves quickly toward the equilibrium.23

21Lower choices of G by Mediums and Lows in the C cell are not surprising given
the differences between the cells. In the signaling cell choosing G by Mediums and Lows
has the advantage of pooling with Highs who choose G frequently. Although the cost
of G for Lows is sufficiently high that G is never a best response, the net payoff loss is
small. In the countersignaling cell Highs choose G less frequently so the advantage to
Mediums of choosing G is smaller. And since Highs and Lows are always distinguished in
the countersignaling cell, there is no chance for Lows to pool with Highs by choosing G,
increasing the net payoff loss to Lows of choosing G.

22In order to implement this test, as well as to eliminate one possible source of depen-
dence among data points, play over each player and type was averaged. Specifically, if the
player with ID# 6 was a Medium type in rounds 11 and 12, and played G in 11 and B in
12, she was listed as having chosen G with relative frequency 0.5. If the player with ID#
7 was a Medium type in only round 10, and played B, he was listed as having chosen G
with relative frequency 0.

23There is a consistent small fraction of Lows choosing good grades, even in the last
rounds of the experiment. This may be due to the fact that in equilibrium, the wage
of students with bad grades is 400, while that of students with good grades is 766.67.
Subtracting the 350 cost of good grades yields 416.67—higher than 400—so a myopic Low
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In the C cell, bad grades are again dominant for Lows, and the payoff
differential is even larger—now, good grades earn them at most 290. Again,
they quickly learn to choose bad grades. Once most of the Lows are choosing
bad grades, good grades become a best response for Mediums, and they
indeed tend to choose good grades. Once Mediums are choosing good grades,
Highs do better by choosing bad grades. While the experiment never reaches
the point where all Highs choose bad grades, by the final round slightly more
than half of them do so, while hardly any Highs in the S cell ever choose
bad grades.

One reason for the slow convergence of play in the C cell to the coun-
tersignaling equilibrium may be the incentives Highs face when play is not
in equilibrium. As shown in Figure 2(b), Highs begin the session by choos-
ing good grades. Given the belief that the other three Highs are going to
continue choosing good grades, the fourth High should choose bad grades
only if at least seven of the Mediums choose to earn good grades, but the
fraction of Mediums choosing good grades in the C cell is rarely this high
(only in 18 rounds out of 48). However, as soon as one High is choosing
bad grades the incentive for the remaining Highs to also countersignal is
stronger.24

5. Conclusion

Addition of noisy information on type to a standard signaling model allows
for equilibria in which medium types signal to distinguish themselves from
low types but high types do not. Such countersignaling by high types can
be seen as a sign of confidence. Signaling proves the sender is not a low type
but also reveals the sender’s insecurity that they would be perceived as such
if they did not signal. In contrast, countersignaling indicates the sender’s
faith that whatever other information the receiver has on the sender will
probably be consistent with the sender being of high quality.

Countersignaling captures the intuition that many of the highest qual-
ity senders may be understated rather than overstated in their signaling
behavior. As a result, countersignaling equilibria can invert a number of
the main implications of signaling models. Whereas signaling equilibria can
be inefficient because of excessive signaling, countersignaling equilibria may
be inefficient because of inadequate signaling. While signaling equilibria can
play an informational role in increasing the efficiency of receiver estimates of
type, countersignaling equilibria may lower the efficiency of these estimates.
And while higher costs tend to reduce signaling in a signaling model, a

might mistakenly choose good grades in the hope of earning a higher payoff. This ignores
his own effect on these wages; by choosing good grades, he becomes part of this group,
reducing the group’s expected productivity. The wage of this group falls to 714.29, so that
the L’s payoff decreases to 364.29, and his hopes are dashed.

24This “positive feedback” might explain the higher variance across sessions in play of
the Highs in the C cell.
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limited increase in costs can lead to more signaling in a countersignaling
model.

The extra information information in a countersignaling model can allow
a wide range of pooling and partial-pooling equilibria to survive standard
refinements that leave only a unique, separating equilibrium in a signaling
model. Both signaling and countersignaling equilibria may coexist, along
with mixed strategy equilibria where some high types signal and others coun-
tersignal. When there are more than three types, counter-countersignaling
equilibria are also possible in which the very highest types signal to separate
themselves from countersignaling high types.

Since countersignaling is more complicated behavior than signaling, the
question of whether economic agents can countersignal was tested with a
two-cell experiment in which extra information on sender type was available.
In one cell the extra information was completely uninformative and signaling
by medium and high types was the unique Nash equilibrium. In the other
cell the extra information was partially informative and the unique Nash
equilibrium involved countersignaling by high types even though high types
had a negative cost to signaling. The experimental results confirm that
adding noisy exogenous information on types to signaling games can affect
behavior in directions consistent with the predictions of countersignaling
theory. Countersignaling by high types was rare in the signaling cell but
was the most common choice by the last period of the countersignaling cell.

Appendix A. Proofs

Recall that q̄{L,H}(q) = Eµ[q′|s∗, q] is the expected gross payoff of a type-
q individual whom the receiver believes to belong to {L,H}. Let ŝ∗L solve
q̄{L,H}(L) − c(ŝ∗L, L) = L. Since q̄{L,H}(L) > L, ŝ∗L > 0. Now for s∗ ≥
0, let s̃∗M (s∗) and ŝ∗M (s∗) solve q̄{L,H}(L) − c(s∗, L) = M − c(s̃∗M , L) and
M−c(ŝ∗M (s∗),M) = q̄{L,H}(M)−c(s∗,M). Note that s̃∗M (s∗) is the minimum
signal required to deter Lows from imitating the Mediums and ŝ∗L and ŝ∗M (s∗)
are the maximum signals that Lows and Mediums are willing to send before
they would prefer to send some alternative signal.

Lemma 1. A countersignaling equilibrium exists if and only if there is an s∗
and an s∗M such that s∗ ∈ [0, ŝ∗L], s∗M ∈ [s̃∗M (s∗), ŝ∗M (s∗)] and q̄{L,H}(H) −
c(s∗,H) ≥ M − c(s∗M ,H).

Proof. (⇐) For any x ∈ X, let beliefs be given by µ(L|s, x) = 1 whenever
s 6∈ {s∗, s∗M}. Let µ(L|s∗, x) = g(x|L)f(L)/(g(x|L)f(L) + g(x|H)f(H)),
µ(H|s∗, x) = 1 − µ(L|s∗, x) and µ(M |s∗M , x) = 1. These beliefs clearly
satisfy (ii) of the definition of a PBE. Thus we need to show that each
agent’s best response is to follow their prescribed strategy. Obviously no
type has an incentive to choose s 6∈ {s∗, s∗M} since they would receive a
payoff of L− c(s, q) which is no greater than the payoff L they would get by
choosing s = 0.
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Now, since s∗ ≤ ŝ∗L, Eµ[q′|s∗, L]− c(s∗, L) ≥ q̄{L,H}(L)− c(ŝ∗L, q) = L it is
individually rational for a type-L player to choose s∗. Since, s∗M ≥ s̃∗M (s∗),
it follows that Eµ[q′|s∗, L]− c(s∗, L) = M − c(s̃∗M (s∗), L) ≥ M − c(s∗M , L) so
no L-type individual has an incentive to choose s = s∗M .

Since s∗M ≤ ŝ∗M (s∗), M − c(s∗M ,M) ≥ M − c(ŝ∗M (s∗),M) = q̄{L,H}(M)−
c(s∗,M) no type-M individual has an incentive to choose s = s∗.

Finally, in order for Highs to be willing to send signal s∗, they must
get at least as much as they would if they imitated the Mediums (i.e.,
q̄{L,H}(H)− c(s∗,H) ≥ M − c(s∗M ,H)).

(⇒) Follows by reversing the previous arguments. ¥
Proof of Proposition 2. We already know the interval [0, ŝ∗L] is non-empty
so it remains to be shown that if q̄{L,H}(L) and q̄{L,M}(M) are sufficiently
small then [s̃∗M (s∗), ŝ∗M (s∗)] is non-empty and if q̄{L,M}(H) is sufficiently
large then q̄{L,H}(H)− c(s∗,H) ≥ M − c(s∗M ,H).

First, note that s̃∗M (s∗) > 0 exists if and only if q̄{L,H}(L)− c(s∗, L) < M .
This is true if and only if q̄{L,H}(L) is sufficiently small.

Next, since we are only looking for sufficient conditions, take s∗ to be
“small.” For s∗ small, s̃∗M (s∗) and ŝ∗M (s∗) satisfy c(s̃∗M (s∗), L) ≈ M −
[q̄{L,H}(L) − c(s∗, L)] and c(ŝ∗M (s∗), M) ≈ M − [q̄{L,H}(M) − c(s∗,M)].
If g is such that q̄{L,H}(M) is “close” to q̄{L,H}(L) then c(s̃∗M (s∗), L) ≈
c(ŝ∗M (s∗),M). Since c(s,M) < c(s, L) if follows that s̃∗M (s∗) < ŝ∗M (s∗).
That is, when q̄{L,H}(M) is sufficiently small (i.e., close to q̄{L,H}(L)), the
interval [s̃∗M (s∗), ŝ∗M (s∗)] is non-empty.

Finally, given some s∗M ∈ [s̃∗M (s∗), ŝ∗M (s∗)], it is clear that when q̄{L,H}(H)
is sufficiently close to H, q̄{L,H}(H)− c(s∗,H) ≥ M − c(s∗M ,H). ¥
Proof of Proposition 3. Let

∫
x∈X g(x|L)g(x|H)dx < ε1 and

∫
x∈X |g(x|M)−

g(x|L)|dx < ε2.
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From the proof of Proposition 2, first we need to show that q{L,H}(L) is
sufficiently small.

L− q{L,H}(L) =
∫

x∈X

(
g(x|L)f(L)

g(x|L)f(L) + g(x|H)f(H)
L +

g(x|H)f(H)
g(x|L)f(L) + g(x|H)f(H)

H

)
g(x|L)dx− L

=
∫

x∈X

g(x|H)f(H)g(x|L)
g(x|L)f(L) + g(x|H)f(H)

(H − L) dx

≤ 1
f(L)

∫

x∈X

√
g(x|H)f(H)g(x|L)f(L)

2
(H − L) dx

=
1
2

√
f(H)
f(L)

(H − L)
∫

x∈X

√
g(x|L)g(x|H)dx

≤ 1
2

√
f(H)
f(L)

(H − L)

√∫

x∈X
g(x|L)g(x|H)dx

<

√
f(H)
f(L)

(H − L)
2

√
ε1

where the third line follows from the fact that ab/(a+b) ≤
√

ab/2 for a, b > 0.
Hence q{L,H}(L)− L can be made arbitrarily small by choice of ε1.

Next we need to show that q{L,H}(M) is sufficiently close to q{L,H}(L).

q{L,H}(M)− q{L,H}(L) =
∫

x∈X

(
g(x|L)f(L)

g(x|L)f(L) + g(x|H)f(H)
L +

g(x|H)f(H)
g(x|L)f(L) + g(x|H)f(H)

H

)
×

(g(x|M)− g(x|L)) dx

≤
∫

x∈X

(
g(x|L)f(L)

g(x|L)f(L) + g(x|H)f(H)
L +

g(x|H)f(H)
g(x|L)f(L) + g(x|H)f(H)

H

)
×

|g(x|M)− g(x|L)|dx

≤H

∫

x∈X
|g(x|M)− g(x|L)|dx

<Hε2.

Hence q̄{L,H}(M)− q̄{L,H}(L) can be made arbitrarily small by choice of ε2.
Finally we need to show that H−q{L,H}(H) is sufficiently small. Following

the same logic as in the first step above,

H − q{L,H}(H) <

√
f(L)
f(H)

(H − L)
2

√
ε1.

so H − q{L,H}(H) can be made arbitrarily small by choice of ε1. ¥
Proof of Proposition 4. Let the Pareto dominant signaling equilibrium be
(0, sM , sH). The Pareto dominant countersignaling equilibrium is that in-
volving the least signaling, or (0, s∗M , 0) where s∗M solves q̄{L,H}(L) = M −
c(s∗M , L). Since q̄{L,H}(L) > L, it is clear that Lows are strictly better off.



26 NICK FELTOVICH, RICK HARBAUGH, AND TED TO

It is less costly to deter Lows from imitating, so it follows that s∗M < sM

and therefore Mediums are also strictly better off. So if any type is not
strictly better off it must be Highs, i.e., q̄{L,H}(H) ≤ H − c(sH ,H). Since
(0, sM , sH) is the Pareto dominant signaling equilibrium, M − c(sM ,M) =
H − c(sH ,M). Since s∗M < sM , M − c(s∗M ,M) > H − c(sH ,M). This
implies that beliefs which satisfy the Intuitive Criterion must put probabil-
ity zero on the event that a signal s in an open neighborhood of sH was
sent by a Medium. Similarly, Lows would never send such a signal. But
since q̄{L,H}(H) ≤ H − c(sH ,H), Highs would have an incentive to deviate
from the equilibrium with any signal s ∈ N(sH , ε) where s < sH . There-
fore (0, s∗M , 0) fails the Intuitive Criterion. Finally, receivers are indifferent
between any equilibria of the model. ¥
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